Enhancing pitch angle control in variable speed doubly fed induction generator based wind energy conversion system using advanced adaptive neuro-fuzzy approach with particle swarm optimization

被引:0
作者
Sahoo, Satyabrata [1 ]
机构
[1] Nalla Malla Reddy Engn Coll, Hyderabad 500088, India
关键词
Adaptive neuro-fuzzy inference system; wind energy conversion system; doubly fed induction generator; pitch angle control; particle swarm optimization; MODEL-PREDICTIVE CONTROL; PSO-ANFIS APPROACH; POWER-CONTROL; TURBINES; IDENTIFICATION; PERFORMANCE; PI;
D O I
10.1177/0309524X241275145
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Pitch angle control is a common method used to smooth out output power fluctuations in the wind turbines. This paper focuses on Particle Swarm Optimization (PSO) based Adaptive Neuro-Fuzzy Inference System (ANFIS) pitch angle control scheme for a variable speed Doubly Fed Induction Generator (DFIG) based wind energy conversion system designed for operation in high wind speed regions. The proposed enhanced adaptive controller comprises both Sugeno type fuzzy inference system (FIS) and neural network architecture. In the Sugeno type FIS, the membership functions are optimized using a revisited PSO method. The primary objective is to control the pitch angle to ensure that generator power and speed operate within desired references, reducing fluctuations and minimizing mechanical blade stress. A MATLAB/SIMULINK model of wind energy conversion system setup is prepared and simulations are conducted using different control methods. The effectiveness of the proposed approach is confirmed based on the simulation results.
引用
收藏
页码:444 / 461
页数:18
相关论文
共 40 条
  • [1] Direct Power Control of Doubly-Fed-Induction-Generator-Based Wind Turbines Under Unbalanced Grid Voltage
    Abad, Gonzalo
    Angel Rodriguez, Miguel
    Iwanski, Grzegorz
    Poza, Javier
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2010, 25 (02) : 442 - 452
  • [2] MPPT and pitch angle control for wind energy conversion system -Comparison of selected sites in Morocco-
    Aissi, T.
    Kandoussi, K.
    Abouelmahjoub, Y.
    El Otmani, R.
    [J]. IFAC PAPERSONLINE, 2022, 55 (12): : 109 - 114
  • [3] Overview of Control Systems for the Operation of DFIGs in Wind Energy Applications
    Cardenas, Roberto
    Pena, Ruben
    Alepuz, Salvador
    Asher, Greg
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (07) : 2776 - 2798
  • [4] Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Electricity Prices Forecasting
    Catalao, J. P. S.
    Pousinho, H. M. I.
    Mendes, V. M. F.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (01) : 137 - 144
  • [5] Cole J., 2024, GWEC GLOBAL WIND REP, P10
  • [6] Predicting climatic threats to an endangered freshwater mussel in Europe: The need to account for fish hosts
    da Silva, Janine P.
    Goncalves, Duarte Vasconcelos
    Lopes-Lima, Manuel
    Anastacio, Pedro M.
    Banha, Filipe
    Frimpong, Emmanuel
    Gama, Mafalda
    Miranda, Rafael
    Reis, Joaquim
    Filipe, Ana Filipa
    Sousa, Ronaldo
    [J]. FRESHWATER BIOLOGY, 2022, 67 (05) : 842 - 856
  • [7] Wind farm power output optimization using cooperative control methods
    Deljouyi, Nasim
    Nobakhti, Amin
    Abdolahi, Abdollah
    [J]. WIND ENERGY, 2021, 24 (05) : 502 - 514
  • [8] Truong DN, 2019, ENG TECHNOL APPL SCI, V9, P4384
  • [9] Eberhart R., 2001, Swarm Intelligence, DOI DOI 10.1016/B978-155860595-4/50007-3
  • [10] Electromechanical Dynamics of Controlled Variable-Speed Wind Turbines
    Ghosh, Sudipta
    Senroy, Nilanjan
    [J]. IEEE SYSTEMS JOURNAL, 2015, 9 (02): : 639 - 646