A Scalable and PVT Invariant Spiking Neuron Using Asynchronous CMOS Logic

被引:0
|
作者
Loi, Dante [1 ]
Granizo, Javier [1 ]
Hernandez, Luis [1 ]
机构
[1] Carlos III Univ Madrid, Elect Tech Dept, Leganes, Spain
基金
欧盟地平线“2020”;
关键词
digitally controlled oscillator; neuromorphic computing; SNNs;
D O I
10.1109/ISCAS58744.2024.10558397
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces a unique asynchronous digital version of the widely recognized LIF neuron model, which is commonly used in spiking neural networks. This proposed circuit provides a technologically scalable alternative to conventional analog implementations. Despite utilizing digital logic, the neuron circuit employs internal variable representations that are rate encoded as spike trains. This approach simplifies the internal circuitry by eliminating the need for arithmetic circuits and minimizes power consumption, achieving a figure of merit of 310 fJ/SOP. The programmability of the parameters, combined with these features, facilitates the use of off-chip gradient learning techniques without performance degradation due to PVT and mismatch variations during deployment.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A useful application of CMOS ternary logic to the realisation of asynchronous circuits
    Mariani, R
    Roncella, R
    Saletti, R
    Terreni, P
    27TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC - 1997 PROCEEDINGS, 1997, : 203 - 208
  • [22] Parallel, asynchronous, fuzzy logic systems realized in CMOS technology
    Tomasz Talaśka
    Advances in Computational Mathematics, 2019, 45 : 1807 - 1823
  • [23] DYNAMIC ASYNCHRONOUS LOGIC FOR HIGH-SPEED CMOS SYSTEMS
    MCAULEY, AJ
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1992, 27 (03) : 382 - 388
  • [24] Parallel, asynchronous, fuzzy logic systems realized in CMOS technology
    Talaska, Tomasz
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (04) : 1807 - 1823
  • [25] LOGIC SYNTHESIS OF RACE-FREE ASYNCHRONOUS CMOS CIRCUITS
    PIGUET, C
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1991, 26 (03) : 371 - 380
  • [26] A CMOS-based Neuron Circuit for Spiking Neural Networks with Memristive Synapse
    Liu, Hai-jun
    Li, Ji-wei
    Li, Zhi-wei
    Li, Qing-jiang
    Diao, Jie-tao
    2018 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATIONS AND MECHATRONICS ENGINEERING (CCME 2018), 2018, 332 : 550 - 555
  • [27] Spiking Neuron Model Approximation using GEP
    Espinosa-Ramos, Josafath I.
    Cruz Cortes, Nareli
    Vazquez, Roberto A.
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 3260 - 3267
  • [28] Supervisory control of discrete event systems under asynchronous spiking neuron P systems
    Chen, Xiaoliang
    Peng, Hong
    Wang, Jun
    Hao, Fei
    INFORMATION SCIENCES, 2022, 597 : 253 - 273
  • [29] Hybrid spin-CMOS stochastic spiking neuron for high-speed emulation of In vivo neuron dynamics
    Pyle, Steven D.
    Camsari, Kerem Y.
    DeMara, Ronald F.
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2018, 12 (04): : 122 - 129
  • [30] A Compact, Power Efficient, Self-Adaptive and PVT Invariant CMOS Relaxation Oscillator
    Mounika, Kelam
    Battu, Balaji Yadav
    Abbas, Zia
    2020 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2020), 2020, : 1 - 6