Quarter-symmetric connection on an almost Hermitian manifold and on a Kähler manifold

被引:0
作者
Zlatanovic, Milan Lj. [1 ]
Maksimovic, Miroslav D. [2 ]
机构
[1] Univ Nis, Fac Sci & Math, Dept Math, Nish, Serbia
[2] Univ Pristina Kosovska Mitrovica, Fac Sci & Math, Dept Math, Kosovska Mitrovica, Serbia
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2024年 / 53卷 / 04期
关键词
almost Hermitian manifold; curvature tensors; hybrid tensor; K & auml; hler manifold; quarter-symmetric connection; torsion tensor; METRIC CONNECTIONS;
D O I
10.15672/hujms.1219762
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper observes an almost Hermitian manifold as an example of a generalized Riemannian manifold and examines the application of a quarter-symmetric connection on the almost Hermitian manifold. The almost Hermitian manifold with quarter-symmetric connection preserving the generalized Riemannian metric is actually the K & auml;hler manifold. Observing the six linearly independent curvature tensors with respect to the quarter- symmetric connection, we construct tensors that do not depend on the quarter-symmetric connection generator. One of them coincides with the Weyl projective curvature tensor of symmetric metric g. Also, we obtain the relations between the Weyl projective curvature tensor and the holomorphically projective curvature tensor. Moreover, we examine the properties of curvature tensors when some tensors are hybrid.
引用
收藏
页码:963 / 980
页数:18
相关论文
共 28 条
  • [1] [Anonymous], 1965, Differential Geometry on Complex and Almost Complex Spaces
  • [2] Bhowmik S., 2010, Bull. Kerala Math. Assoc., V6, P99
  • [3] A Quarter-symmetric Metric Connection on Almost Contact B-metric Manifolds
    Bulut, Senay
    [J]. FILOMAT, 2019, 33 (16) : 5181 - 5190
  • [4] Chaturvedi BB, 2015, FACTA UNIV-SER MATH, V30, P115
  • [5] Chaturvedi B. B., 2015, Global Journal of Mathematical Sciences, V7, P17
  • [6] Chaubey S. K., 2008, Tensor, N.S., V70, P202
  • [7] Certain Curvature Conditions on P-Sasakian Manifolds Admitting a Quater-Symmetric Metric Connection
    De, Uday Chand
    Zhao, Peibiao
    Mandal, Krishanu
    Han, Yanling
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2020, 41 (01) : 133 - 146
  • [8] Dubey A.K., 2010, Int. J. Contemp. Math. Sci., V5, P1001
  • [9] Gauduchon P, 1997, B UNIONE MAT ITAL, V11B, P257
  • [10] GOLAB S, 1975, TENSOR, V29, P249