High-temperature quantum valley Hall effect with quantized resistance and a topological switch

被引:8
作者
Huang, Ke [1 ]
Fu, Hailong [1 ,5 ]
Watanabe, Kenji [2 ]
Taniguchi, Takashi [3 ]
Zhu, Jun [1 ,4 ]
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, 1-1 Namiki, Tsukuba 3050044, Japan
[3] Natl Inst Mat Sci, Res Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba 3050044, Japan
[4] Penn State Univ, Ctr 2 Dimens & Layered Mat, University Pk, PA 16802 USA
[5] Zhejiang Univ, Sch Phys, Hangzhou 310058, Peoples R China
基金
美国国家科学基金会;
关键词
GRAPHENE; STATE; SUPERCONDUCTIVITY; TRANSPORT;
D O I
10.1126/science.adj3742
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Edge states of a topological insulator can be used to explore fundamental science emerging at the interface of low dimensionality and topology. Achieving a robust conductance quantization, however, has proven challenging for helical edge states. In this work, we show wide resistance plateaus in kink states-a manifestation of the quantum valley Hall effect in Bernal bilayer graphene-quantized to the predicted value at zero magnetic field. The plateau resistance has a very weak temperature dependence up to 50 kelvin and is flat within a dc bias window of tens of millivolts. We demonstrate the electrical operation of a topology-controlled switch with an on/off ratio of 200. These results demonstrate the robustness and tunability of the kink states and its promise in constructing electron quantum optics devices.
引用
收藏
页码:657 / 661
页数:5
相关论文
共 53 条
  • [1] One-dimensional proximity superconductivity in the quantum Hall regime
    Barrier, Julien
    Kim, Minsoo
    Kumar, Roshan Krishna
    Xin, Na
    Kumaravadivel, P.
    Hague, Lee
    Nguyen, E.
    Berdyugin, A. I.
    Moulsdale, Christian
    Enaldiev, V. V.
    Prance, J. R.
    Koppens, F. H. L.
    Gorbachev, R. V.
    Watanabe, K.
    Taniguchi, T.
    Glazman, L. I.
    Grigorieva, I. V.
    Fal'ko, V. I.
    Geim, A. K.
    [J]. NATURE, 2024, 628 (8009) : 729 - 730
  • [2] Bocquillon E, 2017, NAT NANOTECHNOL, V12, P137, DOI [10.1038/nnano.2016.159, 10.1038/NNANO.2016.159]
  • [3] Chiral Luttinger liquids at the fractional quantum Hall edge
    Chang, AM
    [J]. REVIEWS OF MODERN PHYSICS, 2003, 75 (04) : 1449 - 1505
  • [4] Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
    Chang, Cui-Zu
    Zhang, Jinsong
    Feng, Xiao
    Shen, Jie
    Zhang, Zuocheng
    Guo, Minghua
    Li, Kang
    Ou, Yunbo
    Wei, Pang
    Wang, Li-Li
    Ji, Zhong-Qing
    Feng, Yang
    Ji, Shuaihua
    Chen, Xi
    Jia, Jinfeng
    Dai, Xi
    Fang, Zhong
    Zhang, Shou-Cheng
    He, Ke
    Wang, Yayu
    Lu, Li
    Ma, Xu-Cun
    Xue, Qi-Kun
    [J]. SCIENCE, 2013, 340 (6129) : 167 - 170
  • [5] Gate controlled valley polarizer in bilayer graphene
    Chen, Hao
    Zhou, Pinjia
    Liu, Jiawei
    Qiao, Jiabin
    Oezyilmaz, Barbaros
    Martin, Jens
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Majorana zero modes from topological kink states in the two-dimensional electron gas
    Cheng, Shu-guang
    Liu, Jie
    Liu, Haiwen
    Jiang, Hua
    Sun, Qing-feng
    Xie, X. C.
    [J]. PHYSICAL REVIEW B, 2020, 101 (16)
  • [7] Universal chiral Luttinger liquid behavior in a graphene fractional quantum Hall point contact
    Cohen, Liam A.
    Samuelson, Noah L.
    Wang, Taige
    Taniguchi, Takashi
    Watanabe, Kenji
    Zaletel, Michael P.
    Young, Andrea F.
    [J]. SCIENCE, 2023, 382 (6670) : 542 - 547
  • [8] Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4
    Deng, Yujun
    Yu, Yijun
    Shi, Meng Zhu
    Guo, Zhongxun
    Xu, Zihan
    Wang, Jing
    Chen, Xian Hui
    Zhang, Yuanbo
    [J]. SCIENCE, 2020, 367 (6480) : 895 - +
  • [9] Robust Helical Edge Transport in Gated InAs/GaSb Bilayers
    Du, Lingjie
    Knez, Ivan
    Sullivan, Gerard
    Du, Rui-Rui
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (09)
  • [10] Fei ZY, 2017, NAT PHYS, V13, P677, DOI [10.1038/nphys4091, 10.1038/NPHYS4091]