Sentiment Analysis on GPT-4 with Comparative Models Using Twitter Data

被引:0
作者
Ozel, Mustafa [1 ]
Bozkurt, Ozlem Cetinkaya [2 ]
机构
[1] Burdur Mehmet Akif Ersoy Univ, Social Sci Inst, Burdur, Turkiye
[2] Burdur Mehmet Akif Ersoy Univ, Bucak Fac Business Adm, Dept Business Adm, Burdur, Turkiye
来源
ACTA INFOLOGICA | 2024年 / 8卷 / 01期
关键词
Sentiment analysis; social media; Twitter; X; natural language processing;
D O I
10.26650/acin.1418834
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Every day, people from all over the world use Twitter to talk about many differenttopics using hashtags. Since ChatGPT was launched, researchers have been study-ing how people perceive it in society. This research aims to find out what TurkishTwitter users think about OpenAI's latest AI model called Generative Pre-trainedTransformer 4 (GPT-4). The quantitative data used in this study consist of hashtagson the topic of GPT-4 and involve 2,978 tweets on this topic that were shared onTwitter between March 14-April 9, 2023. The study uses TextBlob sentiment scoresto classify the tweets and support vector machines, logistic regression, XGBoost, andrandom forest algorithms to classify the sentiment of the dataset. The results from thelogistic regression, XGBoost, and support vector methods are in close alignment. Allparameter findings indicate dependable machine learning, emphasizing the models'success in classifying tweet sentiment
引用
收藏
页码:23 / 33
页数:11
相关论文
共 44 条
[1]  
Abdullah M, 2022, Soc Net Anal Mgmt Se, P223, DOI 10.1109/SNAMS58071.2022.10062688
[2]  
Achiam J., 2024, Gpt-4 technical report, DOI 10.48550/arXiv.2303.08774
[3]   Sentiment Analysis Using Common-Sense and Context Information [J].
Agarwal, Basant ;
Mittal, Namita ;
Bansal, Pooja ;
Garg, Sonal .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2015, 2015
[4]  
Agrali Ö, 2021, J METAVERSE, V1, P25
[5]  
Aydin C., 2018, The European Journal of Science and Technology, V14, P169
[6]  
Aydin O, 2023, Is ChatGPT leading generative AI? What is beyond expectations?, P1, DOI [10.2139/ssrn.4341500, DOI 10.2139/SSRN.4341500]
[7]  
Ayhan S, 2014, ESKISEH OSMAN UNIV I, V9, P175
[8]  
Bayram I, 2022, Yonetim Bilisim Sistemleri Dergisi, V8, P20
[9]   A Machine Learning-Sentiment Analysis on Monkeypox Outbreak: An Extensive Dataset to Show the Polarity of Public Opinion From Twitter Tweets [J].
Bengesi, Staphord ;
Oladunni, Timothy ;
Olusegun, Ruth ;
Audu, Halima .
IEEE ACCESS, 2023, 11 :11811-11826
[10]  
Biltawi M, 2016, INT CONF INFORM COMM, P339, DOI 10.1109/IACS.2016.7476075