Short-Term Traffic Forecasting: An LSTM Network for Spatial-Temporal Speed Prediction

被引:18
|
作者
Abduljabbar, Rusul L. [1 ]
Dia, Hussein [1 ]
Tsai, Pei-Wei [2 ]
Liyanage, Sohani [1 ]
机构
[1] Swinburne Univ Technol, Dept Civil & Construct Engn, Hawthorn, Vic 3122, Australia
[2] Swinburne Univ Technol, Dept Comp Sci & Software Engn, Hawthorn, Vic 3122, Australia
来源
FUTURE TRANSPORTATION | 2021年 / 1卷 / 01期
关键词
machine learning; short-term prediction; spatial and temporal analysis; speed forecasting; FLOW PREDICTION; NEURAL-NETWORK;
D O I
10.3390/futuretransp1010003
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Traffic forecasting remains an active area of research in the transport and data science fields. Decision-makers rely on traffic forecasting models for both policy-making and operational management of transport facilities. The wealth of spatial and temporal real-time data increasingly available from traffic sensors on roads provides a valuable source of information for policymakers. This paper adopts the Long Short-Term Memory (LSTM) recurrent neural network to predict speed by considering both the spatial and temporal characteristics of real-time sensor data. A total of 288,653 real-life traffic measurements were collected from detector stations on the Eastern Freeway in Melbourne/Australia. A comparative performance analysis among different models such as the Recurrent Neural Network (RNN) that has an internal memory that is able to remember its inputs and Deep Learning Backpropagation (DLBP) neural network approaches are also reported. The LSTM results showed average accuracies in the outbound direction ranging between 88 and 99 percent over prediction horizons between 5 and 60 min, and average accuracies between 96 and 98 percent in the inbound direction. The models also showed resilience in accuracies as the prediction horizons increased spatially for distances up to 15 km, providing a remarkable performance compared to other models tested. These results demonstrate the superior performance of LSTM models in capturing the spatial and temporal traffic dynamics, providing decision-makers with robust models to plan and manage transport facilities more effectively.
引用
收藏
页码:21 / 37
页数:17
相关论文
共 50 条
  • [1] Multi-Lane Short-Term Traffic Forecasting With Convolutional LSTM Network
    Ma, Yixuan
    Zhang, Zhenji
    Ihler, Alexander
    IEEE ACCESS, 2020, 8 : 34629 - 34643
  • [2] Short-Term Traffic States Forecasting Considering Spatial-Temporal Impact on an Urban Expressway
    Chen, Peng
    Ding, Chuan
    Lu, Guangquan
    Wang, Yunpeng
    TRANSPORTATION RESEARCH RECORD, 2016, (2594) : 61 - 72
  • [3] Spatial-temporal learning structure for short-term load forecasting
    Ganjouri, Mahtab
    Moattari, Mazda
    Forouzantabar, Ahmad
    Azadi, Mohammad
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2023, 17 (02) : 427 - 437
  • [4] STGNet: Short-term residential load forecasting with spatial-temporal gated fusion network
    Feng, Ding
    Li, Dengao
    Zhou, Yu
    Zhao, Jumin
    Zhang, Kenan
    ENERGY SCIENCE & ENGINEERING, 2024, 12 (03) : 541 - 560
  • [5] Traffic State Spatial-Temporal Characteristic Analysis and Short-Term Forecasting Based on Manifold Similarity
    Liu, Qingchao
    Cai, Yingfeng
    Jiang, Haobin
    Chen, Xiaobo
    Lu, Jian
    IEEE ACCESS, 2018, 6 : 9690 - 9702
  • [6] Transferability improvement in short-term traffic prediction using stacked LSTM network
    Li, Junyi
    Guo, Fangce
    Sivakumar, Aruna
    Dong, Yanjie
    Krishnan, Rajesh
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 124
  • [7] Spatial-Temporal Tensor Graph Convolutional Network for Traffic Speed Prediction
    Xu, Xuran
    Zhang, Tong
    Xu, Chunyan
    Cui, Zhen
    Yang, Jian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 92 - 103
  • [8] A noise-immune LSTM network for short-term traffic flow forecasting
    Cai, Lingru
    Lei, Mingqin
    Zhang, Shuangyi
    Yu, Yidan
    Zhou, Teng
    Qin, Jing
    CHAOS, 2020, 30 (02)
  • [9] ClusterST: Clustering Spatial-Temporal Network for Traffic Forecasting
    Luo, Guiyang
    Zhang, Hui
    Yuan, Quan
    Li, Jinglin
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 706 - 717
  • [10] A joint temporal-spatial ensemble model for short-term traffic prediction
    Zheng, Ge
    Chai, Wei Koong
    Katos, Vasilis
    Walton, Michael
    NEUROCOMPUTING, 2021, 457 : 26 - 39