Self-inspired learning for denoising live-cell super-resolution microscopy

被引:3
作者
Qu, Liying [1 ]
Zhao, Shiqun [2 ]
Huang, Yuanyuan [1 ]
Ye, Xianxin [2 ]
Wang, Kunhao [2 ]
Liu, Yuzhen [1 ]
Liu, Xianming [3 ]
Mao, Heng [4 ]
Hu, Guangwei [5 ]
Chen, Wei [6 ]
Guo, Changliang [2 ]
He, Jiaye [7 ,8 ]
Tan, Jiubin [9 ]
Li, Haoyu [1 ,9 ,10 ,11 ]
Chen, Liangyi [2 ,12 ,13 ]
Zhao, Weisong [1 ,9 ,10 ,11 ]
机构
[1] Harbin Inst Technol, Innovat Photon & Imaging Ctr, Sch Instrumentat Sci & Engn, Harbin, Peoples R China
[2] Peking Univ, Natl Biomed Imaging Ctr, Inst Mol Med,State Key Lab Membrane Biol, Sch Future Technol,Beijing Key Lab Cardiometab Mol, Beijing, Peoples R China
[3] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
[4] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[6] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Adv Biomed Imaging Facil, Wuhan, Peoples R China
[7] Natl Innovat Ctr Adv Med Devices, Shenzhen, Peoples R China
[8] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[9] Harbin Inst Technol, Key Lab Ultra Precis Intelligent Instrumentat, Minist Ind & Informat Technol, Harbin, Peoples R China
[10] Harbin Inst Technol, Frontiers Sci Ctr Matter Behave Space Environm, Harbin, Peoples R China
[11] Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin, Peoples R China
[12] PKU, IDG McGovern Inst Brain Res, Beijing, Peoples R China
[13] Beijing Acad Artificial Intelligence, Beijing, Peoples R China
基金
新加坡国家研究基金会; 北京市自然科学基金; 中国国家自然科学基金;
关键词
RESOLUTION; PROTEINS;
D O I
10.1038/s41592-024-02400-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Every collected photon is precious in live-cell super-resolution (SR) microscopy. Here, we describe a data-efficient, deep learning-based denoising solution to improve diverse SR imaging modalities. The method, SN2N, is a Self-inspired Noise2Noise module with self-supervised data generation and self-constrained learning process. SN2N is fully competitive with supervised learning methods and circumvents the need for large training set and clean ground truth, requiring only a single noisy frame for training. We show that SN2N improves photon efficiency by one-to-two orders of magnitude and is compatible with multiple imaging modalities for volumetric, multicolor, time-lapse SR microscopy. We further integrated SN2N into different SR reconstruction algorithms to effectively mitigate image artifacts. We anticipate SN2N will enable improved live-SR imaging and inspire further advances. SN2N, a Self-inspired Noise2Noise module, offers a versatile solution for volumetric time-lapse super-resolution imaging of live cells. SN2N uses self-supervised data generation and self-constrained learning for training with a single noisy frame.
引用
收藏
页码:1895 / 1908
页数:14
相关论文
共 72 条
  • [21] nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
    Isensee, Fabian
    Jaeger, Paul F.
    Kohl, Simon A. A.
    Petersen, Jens
    Maier-Hein, Klaus H.
    [J]. NATURE METHODS, 2021, 18 (02) : 203 - +
  • [22] Kingma DP., 2014, arXiv, p1412.6980
  • [23] Noise2Void-Learning Denoising from Single Noisy Images
    Krull, Alexander
    Buchholz, Tim-Oliver
    Jug, Florian
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2124 - 2132
  • [24] Lakshminarayanan B, 2017, ADV NEUR IN, V30
  • [25] Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material
    Lawo, Steffen
    Hasegan, Monica
    Gupta, Gagan D.
    Pelletier, Laurence
    [J]. NATURE CELL BIOLOGY, 2012, 14 (11) : 1148 - +
  • [26] Removing independent noise in systems neuroscience data using DeepInterpolation
    Lecoq, Jerome
    Oliver, Michael
    Siegle, Joshua H.
    Orlova, Natalia
    Ledochowitsch, Peter
    Koch, Christof
    [J]. NATURE METHODS, 2021, 18 (11) : 1401 - +
  • [27] Versatile phenotype-activated cell sorting
    Lee, Jihwan
    Liu, Zhuohe
    Suzuki, Peter H.
    Ahrens, John F.
    Lai, Shujuan
    Lu, Xiaoyu
    Guan, Sihui
    St-Pierre, Francois
    [J]. SCIENCE ADVANCES, 2020, 6 (43):
  • [28] Lehtinen J., 2018, ICML, P2965, DOI DOI 10.48550/ARXIV.1803.04189
  • [29] A fast blind zero-shot denoiser
    Lequyer, Jason
    Philip, Reuben
    Sharma, Amit
    Hsu, Wen-Hsin
    Pelletier, Laurence
    [J]. NATURE MACHINE INTELLIGENCE, 2022, 4 (11) : 953 - +
  • [30] LuckyProfiler: an ImageJ plug-in capable of quantifying FWHM resolution easily and effectively for super-resolution images
    Li, Mengting
    Song, Qihang
    Xiao, Yinghao
    Wu, Junnan
    Kuang, Weibing
    Zhang, Yingjun
    Huang, Zhen-Li
    [J]. BIOMEDICAL OPTICS EXPRESS, 2022, 13 (08) : 4310 - 4325