An efficient numerical method to the stochastic fractional heat equation with random coefficients and fractionally integrated multiplicative noise

被引:0
作者
Qi, Xiao [1 ]
Xu, Chuanju [2 ,3 ]
机构
[1] Jianghan Univ, Sch Artificial Intelligence, Wuhan 430056, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Peoples R China
关键词
Stochastic time-fractional heat equation; Random coefficient; Multiplicative noise; Strong convergence; Milstein scheme; FINITE-ELEMENT METHODS; PARTIAL-DIFFERENTIAL-EQUATIONS; PDES; DISCRETIZATION; APPROXIMATIONS; DRIVEN; SCHEME;
D O I
10.1007/s13540-024-00335-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the stochastic time-fractional heat diffusion equation involving a Caputo derivative in time of order alpha is an element of(12,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (\frac{1}{2},1]$$\end{document}, driven simultaneously by a random diffusion coefficient field and fractionally integrated multiplicative noise. First, the well-posedness of the underlying problem is established by proving the existence, uniqueness, and stability of the mild solution. Then a spatio-temporal discretization method based on a Milstein exponential integrator scheme and finite element method is constructed and analyzed. The strong convergence rate of the fully discrete solution is derived. Numerical experiments are finally reported to confirm the theoretical result.
引用
收藏
页码:2754 / 2780
页数:27
相关论文
共 53 条
[1]  
[Anonymous], 2014, Stoch Partial Differ Equ Anal Comput
[2]  
[Anonymous], 1994, J. Comput. Graph. Statist.
[3]   Galerkin finite element approximations of stochastic elliptic partial differential equations [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :800-825
[4]   A stochastic collocation method for elliptic partial differential equations with random input data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) :1005-1034
[5]   Fast simulation of truncated Gaussian distributions [J].
Chopin, Nicolas .
STATISTICS AND COMPUTING, 2011, 21 (02) :275-288
[6]  
Dai X., 2022, ARXIV, DOI DOI 10.48550/ARXIV.2206.00320
[7]  
Darehmiraki M., 2018, INT J APPL COMPUT MA, V4, P1, DOI [10.1007/s40819-017-0455-9, DOI 10.1007/S40819-017-0455-9]
[8]   Analysis of fractional differential equations [J].
Diethelm, K ;
Ford, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) :229-248
[9]   Euler-Maruyama scheme for Caputo stochastic fractional differential equations [J].
Doan, T. S. ;
Huong, P. T. ;
Kloeden, P. E. ;
Vu, A. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 380
[10]  
Elzaki T. M., 2019, World Appl. Sci. J., V237, P18, DOI DOI 10.5829/IDOSI.WASJ.2019.18.24