Experimental and numerical study of H2 enrichment on swirl/bluff-body stabilized lean premixed n-butane/air flame

被引:3
|
作者
Raj, Vishnu [1 ]
Prathap, Chockalingam [1 ]
机构
[1] Indian Inst Space Sci & Technol, Thiruvananthapuram 695547, Kerala, India
关键词
Swirl combustion; Hydrogen enrichment; Strain rate; Flame surface density; HYDROGEN-ENRICHMENT; BLUFF-BODY; SWIRL BURNER; NATURAL-GAS; AIR FLAMES; COMBUSTION; METHANE; DYNAMICS; EMISSIONS; FLOW;
D O I
10.1016/j.ijhydene.2024.08.410
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study focused on the stabilization of lean premixed flames of n-butane/H-2/air 2 /air with swirl/bluff-body. The research explored four different hydrogen fractions (0, 20%, 40%, and 80%) at a constant equivalence ratio and Reynolds number. The turbulent reacting flow was resolved using a combination of Delayed Detached Eddy Simulation (DDES) and Flamelet Generated Manifold (FGM) model. The velocity fields and reaction zones were obtained through Particle Image Velocimetry (PIV) and OH* chemiluminescence measurements respectively. H-2 addition to n-butane significantly enhanced flame characteristics. The chemiluminescence imaging showed that the flame base became stronger with increasing hydrogen addition, reducing the risk of flame lift-off. Hydrogen addition not only increased the overall reaction rate but also changed the combustion intensity at the nozzle exit from weak to strong, which is crucial for flame stabilization. Interestingly, no flashback was observed even at 80% H-2 addition to n-butane at the same level of power rating. The flow strain rate analysis of the PIV measurements showed that the inclusion of hydrogen skewed the strain rate probability density functions towards the positive side, indicating an increase in the burning rate. The results demonstrate a progressive increase in preferential diffusion of H-2 from reactants to products as the H-2 enrichment in the fuel rises and resulted in a more intense flame. Also, the present simulation results were validated with the PIV data, and they showed good agreement. Specifically, an 80% H-2 blend exhibited a 16% peak enhancement in flame surface density compared to pure n-butane while concurrently reducing CO2 2 emissions by 23.2%. The incorporation of H-2 also led to the increased vortex strength and strain rate within the flame.
引用
收藏
页码:166 / 176
页数:11
相关论文
共 50 条
  • [11] Experimental Study of N2 Dilution on Bluff-Body Stabilized LPG Jet Diffusion Flame
    Kumar, P.
    Mishra, D. P.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2009, 45 (01) : 1 - 7
  • [12] FGM-LES study of premixed H2/CH4/air flame flashback in a bluff-body swirl burner: The impact of preferential diffusion
    Xia, Hao
    Zhang, Weijie
    Han, Wang
    Wang, Jinhua
    Huang, Zuohua
    van Oijen, Jeroen
    COMBUSTION AND FLAME, 2025, 275
  • [13] Investigation on the effects of swirl-strength on flashback phenomenon of premixed CH4/H2/air flame in a bluff-body swirl burner
    Cheng, Lei
    Xia, Hao
    Peng, Shiyao
    Pan, Biao
    Cui, Shaohua
    Zhang, Meng
    Wang, Jinhua
    Huang, Zuohua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 90 : 210 - 217
  • [14] Experimental and Kinetic Investigation of Stoichiometric to Rich NH3/H2/Air Flames in a Swirl and Bluff-Body Stabilized Burner
    Pacheco, Goncalo P.
    Rocha, Rodolfo C.
    Franco, Miguel C.
    Mendes, Miguel A. A.
    Fernandes, Edgar C.
    Coelho, Pedro J.
    Bai, Xue-Song
    ENERGY & FUELS, 2021, 35 (09) : 7201 - 7216
  • [15] Characteristics of NH3/H2/air flames in a combustor fired by a swirl and bluff-body stabilized burner
    Franco, Miguel C.
    Rocha, Rodolfo C.
    Costa, Mario
    Yehia, Mohamed
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (04) : 5129 - 5138
  • [16] Numerical simulation of CH4-H2-AIR non-premixed flame stabilized by a bluff body
    Khaladi, Fatma Zohra
    Alliche, Mounir
    Chikh, Salah
    MATERIALS & ENERGY I (2015) / MATERIALS & ENERGY II (2016), 2017, 139 : 530 - 536
  • [17] Investigation of the influence of the bluff-body temperature on a lean premixed DME/air flame approaching blowoff
    Wang, Xiaoyang
    Liu, Kunpeng
    Fu, Chen
    Wang, Meng
    Yu, Juan
    Yan, Yingwen
    Li, Jinghua
    Ge, Xiaonan
    Gao, Yi
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2024, 152
  • [18] Numerical Analysis of Combustion and Thermal Performance of a Bluff-Body and Swirl-Stabilized Micro-Combustor with Premixed NH3/H2/Air Flames
    Sheykhbaglou, Soroush
    Dimitriou, Pavlos
    ENERGIES, 2025, 18 (04)
  • [19] Experimental study of the effects of free stream turbulence on characteristics and flame structure of bluff-body stabilized conical lean premixed flames
    Chowdhury, Bikram Roy
    Cetegen, Baki M.
    COMBUSTION AND FLAME, 2017, 178 : 311 - 328
  • [20] Large Eddy Simulation of the Effect of Hydrogen Ratio on the Flame Stabilization and Blow-Off Dynamics of a Lean CH4/H2/Air Bluff-Body Flame
    Cheng, Lei
    Zhang, Meng
    Peng, Shiyao
    Wang, Jinhua
    Huang, Zuohua
    APPLIED SCIENCES-BASEL, 2024, 14 (05):