Multi-timescale attention residual shrinkage network with adaptive global-local denoising for rolling-bearing fault diagnosis

被引:0
|
作者
Gao, Huihui [1 ,2 ,3 ]
Zhang, Xiaoran [1 ,2 ,3 ]
Gao, Xuejin [1 ,2 ,3 ]
Li, Fangyu [1 ,2 ,3 ]
Han, Honggui [1 ,2 ,3 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
[3] Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Rolling-bearing fault diagnosis; Multi-timescale feature extraction; Attention mechanism; Adaptive soft thresholding function; Global-local noise elimination; STRONG NOISE;
D O I
10.1016/j.knosys.2024.112478
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In actual engineering scenarios, bearing fault signals are inevitably overwhelmed by strong background noise from various sources. However, most deep-learning-based diagnostic models tend to broaden the feature extraction scale to extract rich fault features for bearing-fault identification under noise interference, with little attention paid to multi-timescale discriminative feature mining with adaptive noise rejection, which affects the diagnostic performance. Thus, a multi-timescale attention residual shrinkage network with adaptive global-local denoising (AMARSN) was proposed for rolling-bearing fault diagnosis by learning discriminative multi-timescale fault features from signals and fully eliminating noise components in the multi-timescale fault features. First, a multi-timescale attention learning module (MALMod) was developed to capture multi-timescale fault features and enhance their discriminability under noise interference. Subsequently, an adaptive global-local denoising module (AGDMod) was constructed to fully eliminate noise in multiscale fault features by constructing specific global-local denoising thresholds and designing an adaptive smooth soft thresholding function. Finally, end-toend bearing fault diagnosis tasks were realized using a softmax classifier located at the end of the AMARSN. The AMARSN was validated using two bearing datasets. The extensive results demonstrated that the AMARSN can mine more effective fault features from signals and achieve average diagnostic accuracies of 85.24% and 80.09% under different noise with different levels.
引用
收藏
页数:16
相关论文
共 44 条
  • [31] A novel fault diagnosis scheme for rolling bearing based on symbolic aggregate approximation and convolutional neural network with channel attention
    Wang, Bo
    Ning, Yi
    Zhang, Yahu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (01)
  • [32] Fault diagnosis method of rolling bearing based on noise reduction enhanced multi-frequency scale network
    Kong, Dewen
    Zhan, Hongfei
    Yu, Junhe
    Wang, Rui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [33] A Multi-Scale Attention Mechanism Based Domain Adversarial Neural Network Strategy for Bearing Fault Diagnosis
    Zhang, Quanling
    Tang, Ningze
    Fu, Xing
    Peng, Hao
    Bo, Cuimei
    Wang, Cunsong
    ACTUATORS, 2023, 12 (05)
  • [34] Fault diagnosis of photovoltaic array based on gated residual network with multi-head self attention mechanism
    Belgacem, Ahmed M. E. S. A., I
    Hadef, Mounir
    Djerdir, Abdesslem
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2024, 32 (06) : 806 - 828
  • [35] A novel multi-scale convolutional neural network incorporating multiple attention mechanisms for bearing fault diagnosis
    Hu, Baoquan
    Liu, Jun
    Xu, Yue
    MEASUREMENT, 2025, 242
  • [36] Research on rolling bearing fault diagnosis method based on improved multi-source fusion convolutional neural network
    Shi, Huaitao
    Sun, Huayang
    Bai, Xiaotian
    Song, Zelong
    Gao, Tianhao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [37] A novel fault diagnosis model of rolling bearing under variable working conditions based on attention mechanism and domain adversarial neural network
    Liu, Zhiping
    Zhang, Peng
    Yu, Yannan
    Li, Mengzhen
    Zeng, Zhuo
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (03) : 1101 - 1111
  • [38] A novel fault diagnosis model of rolling bearing under variable working conditions based on attention mechanism and domain adversarial neural network
    Zhiping Liu
    Peng Zhang
    Yannan Yu
    Mengzhen Li
    Zhuo Zeng
    Journal of Mechanical Science and Technology, 2024, 38 : 1101 - 1111
  • [39] A rolling bearing fault diagnosis method for imbalanced data based on multi-scale self-attention mechanism and novel loss function
    Qiang Ruiru
    Zhao Xiaoqiang
    INSIGHT, 2024, 66 (11) : 690 - 701
  • [40] Avionics Module Fault Diagnosis Algorithm Based on Hybrid Attention Adaptive Multi-Scale Temporal Convolution Network
    Du, Qiliang
    Sheng, Mingde
    Yu, Lubin
    Zhou, Zhenwei
    Tian, Lianfang
    He, Shilie
    ENTROPY, 2024, 26 (07)