Semi-Supervised Semantic Image Segmentation by Deep Diffusion Models and Generative Adversarial Networks

被引:5
作者
Diaz-Frances, Jose Angel [1 ]
Fernandez-Rodriguez, Jose David [1 ]
Thurnhofer-Hemsi, Karl [1 ]
Lopez-Rubio, Ezequiel [1 ]
机构
[1] Univ Malaga, ITIS Software, Calle Arquitecto Francisco Penalosa 18, Malaga 29010, Spain
关键词
Semantic segmentation; semi-supervised; diffusion model;
D O I
10.1142/S0129065724500576
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Typically, deep learning models for image segmentation tasks are trained using large datasets of images annotated at the pixel level, which can be expensive and highly time-consuming. A way to reduce the amount of annotated images required for training is to adopt a semi-supervised approach. In this regard, generative deep learning models, concretely Generative Adversarial Networks (GANs), have been adapted to semi-supervised training of segmentation tasks. This work proposes MaskGDM, a deep learning architecture combining some ideas from EditGAN, a GAN that jointly models images and their segmentations, together with a generative diffusion model. With careful integration, we find that using a generative diffusion model can improve EditGAN performance results in multiple segmentation datasets, both multi-class and with binary labels. According to the quantitative results obtained, the proposed model improves multi-class image segmentation when compared to the EditGAN and DatasetGAN models, respectively, by 4.5% and 5.0%. Moreover, using the ISIC dataset, our proposal improves the results from other models by up to 11% for the binary image segmentation approach.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] SEMI-SUPERVISED SEMANTIC GENERATIVE NETWORKS FOR REMOTE SENSING IMAGE SEGMENTATION
    Lu, Wanxuan
    Jin, Jidong
    Sun, Xian
    Fu, Kun
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6386 - 6389
  • [2] Semi-supervised semantic segmentation based on Generative Adversarial Networks for remote sensing images
    Liu Yu-Xi
    Zhang Bo
    Wang Bin
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2020, 39 (04) : 473 - 482
  • [3] Semi-Supervised Semantic Image Segmentation using Dual Discriminator Adversarial Networks
    Liu, Beibei
    Hua, Bei
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [4] ROBUST ADVERSARIAL LEARNING FOR SEMI-SUPERVISED SEMANTIC SEGMENTATION
    Zhang, Jia
    Li, Zhixin
    Zhang, Canlong
    Ma, Huifang
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 728 - 732
  • [5] Generative adversarial network for semi-supervised image captioning
    Liang, Xu
    Li, Chen
    Tian, Lihua
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249
  • [6] General image classification method based on semi-supervised generative adversarial networks
    Su L.
    Xu X.
    Lu Q.
    Zhang W.
    High Technology Letters, 2019, 25 (01) : 35 - 41
  • [7] General image classification method based on semi-supervised generative adversarial networks
    苏磊
    Xu Xiangyi
    Lu Qiyu
    Zhang Wancai
    High Technology Letters, 2019, 25 (01) : 35 - 41
  • [8] Semi-Supervised Remote Sensing Image Semantic Segmentation Method Based on Deep Learning
    Li, Linhui
    Zhang, Wenjun
    Zhang, Xiaoyan
    Emam, Mahmoud
    Jing, Weipeng
    ELECTRONICS, 2023, 12 (02)
  • [9] Adversarial Dense Contrastive Learning for Semi-Supervised Semantic Segmentation
    Wang, Ying
    Xuan, Ziwei
    Ho, Chiuman
    Qi, Guo-Jun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4459 - 4471
  • [10] Semi-Supervised Learning for Deep Causal Generative Models
    Ibrahim, Yasin
    Warr, Hermione
    Kamnitsas, Konstantinos
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT XII, 2024, 15012 : 294 - 303