Dual-Domain Learning Network for Polyp Segmentation

被引:0
|
作者
Li, Yan [1 ,2 ]
Zheng, Zhuoran [3 ]
Ren, Wenqi [4 ]
Nie, Yunfeng [5 ]
Zhang, Jingang [6 ]
Jia, Xiuyi [3 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing 100195, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 100195, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[4] Sun Yat Sen Univ, Sch Cyber Sci & Technol, Shenzhen 510006, Peoples R China
[5] Vrije Univ Brussel & Flanders Make, Dept Appl Phys & Photon, Brussel Photon, B-1050 Brussels, Belgium
[6] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100039, Peoples R China
来源
DIGITAL FORENSICS AND WATERMARKING, IWDW 2023 | 2024年 / 14511卷
关键词
Polyp segmentation; Dual-domain learning; Artificial intelligence and applications;
D O I
10.1007/978-981-97-2585-4_17
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic polyp segmentation is a crucial application of artificial intelligence in the medical field. However, this task is challenging due to uneven brightness, variable colors, and blurry boundaries. Most current polyp segmentation methods focus on features extracted from the spatial domain, ignoring the valuable information contained in the frequency domain. In this paper, we propose a Dual-Domain Learning Network (D(2)LNet) for polyp segmentation. Specifically, we propose a Phase-Amplitude Attention Module, which enhances the details in the phase spectrum, while reducing interference from brightness and color in the amplitude spectrum. Moreover, we introduce a Spatial-Frequency Fusion Module that utilizes parameterized frequency-domain features to adjust the style of spatial-domain features and improve polyp visibility. Extensive experiments demonstrate that our method outperforms the state-of-the-art approaches both visually and quantitatively.
引用
收藏
页码:233 / 247
页数:15
相关论文
共 50 条
  • [1] Dual-Domain Feature Interaction Network for Automatic Colorectal Polyp Segmentation
    Yue, Guanghui
    Li, Yuanyan
    Wu, Shangjie
    Jiang, Bin
    Zhou, Tianwei
    Yan, Weiqing
    Lin, Hanhe
    Wang, Tianfu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [2] Super-resolution for remote sensing images via dual-domain network learning
    Yang, Jie
    Ren, Chao
    Zhou, Xin
    He, Xiaohai
    Wang, Zhengyong
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (06)
  • [3] CSUnet: a dual attention and hybrid convolutional network for polyp segmentation
    Liu, Shangwang
    Si, Feiyan
    Lin, Yinghai
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (11) : 8445 - 8456
  • [4] DBMF: Dual Branch Multiscale Feature Fusion Network for polyp segmentation
    Liu, Fangjin
    Hua, Zhen
    Li, Jinjiang
    Fan, Linwei
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 151
  • [5] An Efficient Polyp Segmentation Network
    Erol, Tugberk
    Sarikaya, Duygu
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [6] DAN-PD: Domain adaptive network with parallel decoder for polyp segmentation
    Hu, Jiaqi
    Xu, Yongqin
    Tang, Zhixian
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2022, 101
  • [7] DBMA-Net: A Dual-Branch Multiattention Network for Polyp Segmentation
    Zhai, Chenxu
    Yang, Lei
    Liu, Yanhong
    Yu, Hongnian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 16
  • [8] Dynamic spectrum-driven hierarchical learning network for polyp segmentation
    Wang, Haolin
    Wang, Kai-Ni
    Hua, Jie
    Tang, Yi
    Chen, Yang
    Zhou, Guang-Quan
    Li, Shuo
    MEDICAL IMAGE ANALYSIS, 2025, 101
  • [9] BLE-Net: boundary learning and enhancement network for polyp segmentation
    Na Ta
    Haipeng Chen
    Yingda Lyu
    Taosuo Wu
    Multimedia Systems, 2023, 29 : 3041 - 3054
  • [10] BLE-Net: boundary learning and enhancement network for polyp segmentation
    Ta, Na
    Chen, Haipeng
    Lyu, Yingda
    Wu, Taosuo
    MULTIMEDIA SYSTEMS, 2023, 29 (05) : 3041 - 3054