Artificial intelligence-based pulmonary embolism classification: Development and validation using real-world data

被引:3
作者
da Silva, Luan Oliveira [1 ,3 ]
da Silva, Maria Carolina Bueno [1 ]
Ribeiro, Guilherme Alberto Sousa [1 ]
de Camargo, Thiago Fellipe Ortiz [1 ,2 ]
dos Santos, Paulo Victor [1 ,2 ]
Mendes, Giovanna de Souza [1 ]
de Paiva, Joselisa Peres Queiroz [1 ]
Soares, Anderson da Silva [3 ]
Reis, Marcio Rodrigues da Cunha [1 ,4 ]
Loureiro, Rafael Maffei [1 ]
Calixto, Wesley Pacheco [2 ,4 ]
机构
[1] Hosp Israelita Albert Einstein, Dept Radiol, Sao Paulo, Brazil
[2] Univ Fed Goias, Elect Mech & Comp Engn Sch, Goiania, Brazil
[3] Univ Fed Goias, Inst Informat INF, Goiania, Brazil
[4] Fed Inst Goias, Technol Res & Dev Ctr GCITE, Goiania, GO, Brazil
关键词
COMPUTED-TOMOGRAPHY PULMONARY; NEURAL-NETWORK; ANGIOGRAPHY; CTPA; OPTIMIZATION;
D O I
10.1371/journal.pone.0305839
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents an artificial intelligence-based classification model for the detection of pulmonary embolism in computed tomography angiography. The proposed model, developed from public data and validated on a large dataset from a tertiary hospital, uses a two-dimensional approach that integrates temporal series to classify each slice of the examination and make predictions at both slice and examination levels. The training process consists of two stages: first using a convolutional neural network InceptionResNet V2 and then a recurrent neural network long short-term memory model. This approach achieved an accuracy of 93% at the slice level and 77% at the examination level. External validation using a hospital dataset resulted in a precision of 86% for positive pulmonary embolism cases and 69% for negative pulmonary embolism cases. Notably, the model excels in excluding pulmonary embolism, achieving a precision of 73% and a recall of 82%, emphasizing its clinical value in reducing unnecessary interventions. In addition, the diverse demographic distribution in the validation dataset strengthens the model's generalizability. Overall, this model offers promising potential for accurate detection and exclusion of pulmonary embolism, potentially streamlining diagnosis and improving patient outcomes.
引用
收藏
页数:22
相关论文
共 57 条
[41]   Predicting the Future - Big Data, Machine Learning, and Clinical Medicine [J].
Obermeyer, Ziad ;
Emanuel, Ezekiel J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (13) :1216-1219
[42]   Deep Learning for Pulmonary Embolism Detection: Tackling the RSNA 2020 AI Challenge [J].
Pan, Ian .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (05)
[43]   NEURAL-NETWORK IN THE CLINICAL-DIAGNOSIS OF ACUTE PULMONARY-EMBOLISM [J].
PATIL, S ;
HENRY, JW ;
RUBENFIRE, M ;
STEIN, PD .
CHEST, 1993, 104 (06) :1685-1689
[44]   Magnetic resonance angiography imaging of pulmonary embolism using agents with blood pool properties as an alternative to computed tomography to avoid radiation exposure [J].
Pressacco, Josephine ;
Papas, Konstantin ;
Lambert, Jean ;
Finn, J. Paul ;
Chauny, Jean-Marc ;
Desjardins, Alain ;
Irislimane, Yassin ;
Toporowicz, Kevin ;
Lanthier, Chantal ;
Samson, Paule ;
Desnoyers, Marcel ;
Maki, Jeffrey H. .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 113 :165-173
[45]  
Rajan D., 2020, P MACH LEARN HLTH NE, P220
[46]   High-pitch CT pulmonary angiography (CTPA) with ultra-low contrast medium volume for the detection of pulmonary embolism: a comparison with standard CTPA [J].
Schoenfeld, Tobias ;
Seitz, Patrick ;
Krieghoff, Christian ;
Ponorac, Slavica ;
Woetzel, Alexander ;
Olthoff, Stefan ;
Schaudt, Sebastian ;
Steglich, Jonas ;
Gutberlet, Matthias ;
Gohmann, Robin F. .
EUROPEAN RADIOLOGY, 2024, 34 (03) :1921-1931
[47]   Image Segmentation - A Survey of Soft Computing [J].
Senthilkumaran, N. ;
Rajesh, R. .
2009 INTERNATIONAL CONFERENCE ON ADVANCES IN RECENT TECHNOLOGIES IN COMMUNICATION AND COMPUTING (ARTCOM 2009), 2009, :844-846
[48]   Low volume contrast CTPA in patients with renal dysfunction [J].
Singh, Tushar ;
Lam, Kay-Vin ;
Murray, Conor .
JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2011, 55 (02) :143-148
[49]   Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: a systematic review and meta-analysis [J].
Soffer, Shelly ;
Klang, Eyal ;
Shimon, Orit ;
Barash, Yiftach ;
Cahan, Noa ;
Greenspana, Hayit ;
Konen, Eli .
SCIENTIFIC REPORTS, 2021, 11 (01)
[50]  
Stein A, 2020, RSNA STR Pulmonary Embolism Detection