Artificial intelligence-based pulmonary embolism classification: Development and validation using real-world data

被引:1
|
作者
da Silva, Luan Oliveira [1 ,3 ]
da Silva, Maria Carolina Bueno [1 ]
Ribeiro, Guilherme Alberto Sousa [1 ]
de Camargo, Thiago Fellipe Ortiz [1 ,2 ]
dos Santos, Paulo Victor [1 ,2 ]
Mendes, Giovanna de Souza [1 ]
de Paiva, Joselisa Peres Queiroz [1 ]
Soares, Anderson da Silva [3 ]
Reis, Marcio Rodrigues da Cunha [1 ,4 ]
Loureiro, Rafael Maffei [1 ]
Calixto, Wesley Pacheco [2 ,4 ]
机构
[1] Hosp Israelita Albert Einstein, Dept Radiol, Sao Paulo, Brazil
[2] Univ Fed Goias, Elect Mech & Comp Engn Sch, Goiania, Brazil
[3] Univ Fed Goias, Inst Informat INF, Goiania, Brazil
[4] Fed Inst Goias, Technol Res & Dev Ctr GCITE, Goiania, GO, Brazil
来源
PLOS ONE | 2024年 / 19卷 / 08期
关键词
COMPUTED-TOMOGRAPHY PULMONARY; NEURAL-NETWORK; ANGIOGRAPHY; CTPA; OPTIMIZATION;
D O I
10.1371/journal.pone.0305839
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents an artificial intelligence-based classification model for the detection of pulmonary embolism in computed tomography angiography. The proposed model, developed from public data and validated on a large dataset from a tertiary hospital, uses a two-dimensional approach that integrates temporal series to classify each slice of the examination and make predictions at both slice and examination levels. The training process consists of two stages: first using a convolutional neural network InceptionResNet V2 and then a recurrent neural network long short-term memory model. This approach achieved an accuracy of 93% at the slice level and 77% at the examination level. External validation using a hospital dataset resulted in a precision of 86% for positive pulmonary embolism cases and 69% for negative pulmonary embolism cases. Notably, the model excels in excluding pulmonary embolism, achieving a precision of 73% and a recall of 82%, emphasizing its clinical value in reducing unnecessary interventions. In addition, the diverse demographic distribution in the validation dataset strengthens the model's generalizability. Overall, this model offers promising potential for accurate detection and exclusion of pulmonary embolism, potentially streamlining diagnosis and improving patient outcomes.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Artificial intelligence-based classification of echocardiographic views
    Naser, Jwan A.
    Lee, Eunjung
    Pislaru, Sorin, V
    Tsaban, Gal
    Malins, Jeffrey G.
    Jackson, John, I
    Anisuzzaman, D. M.
    Rostami, Behrouz
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    Kane, Garvan C.
    Pellikka, Patricia A.
    Attia, Zachi, I
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (03): : 260 - 269
  • [2] Artificial intelligence-based classification of breast cancer using cellular images
    Tripathy, Rajesh Kumar
    Mahanta, Sailendra
    Paul, Subhankar
    RSC ADVANCES, 2014, 4 (18): : 9349 - 9355
  • [3] Artificial intelligence-based classification for the diagnostics of skin cancer
    Winkler, Julia K.
    Haenssle, Holger A.
    DERMATOLOGIE, 2022, 73 (11): : 838 - 844
  • [4] Artificial Intelligence, Real-World Automation and the Safety of Medicines
    Bate, Andrew
    Hobbiger, Steve F.
    DRUG SAFETY, 2021, 44 (02) : 125 - 132
  • [5] Validation of prediction algorithm for risk estimation of intracranial aneurysm development using real-world data
    Kim, Tackeun
    Choi, Jisu
    Park, Won-Ju
    Cho, Seunghyeon
    Yoo, Yeongjae
    Kim, Hyeonjun
    Cho, Juhee
    Joo, Jin-Deok
    Oh, Chang Wan
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [6] Artificial Intelligence-Based Image Classification Techniques for Hydrologic Applications
    Thakur, Ritica
    Manekar, V. L.
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)
  • [7] Swarm intelligence-based approach for educational data classification
    Yahya, Anwar Ali
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2019, 31 (01) : 35 - 51
  • [8] Improved detection of small pulmonary embolism on unenhanced computed tomography using an artificial intelligence-based algorithm - a single centre retrospective study
    Hagen, Florian
    Vorberg, Linda
    Thamm, Florian
    Ditt, Hendrik
    Maier, Andreas
    Brendel, Jan Michael
    Ghibes, Patrick
    Bongers, Malte Niklas
    Krumm, Patrick
    Nikolaou, Konstantin
    Horger, Marius
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2024, 40 (11): : 2293 - 2304
  • [9] Interpretation of Structure-Activity Relationships in Real-World Drug Design Data Sets Using Explainable Artificial Intelligence
    Harren, Tobias
    Matter, Hans
    Hessler, Gerhard
    Rarey, Matthias
    Grebner, Christoph
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (03) : 447 - 462
  • [10] Artificial intelligence-based prediction models for acute myeloid leukemia using real-life data: A DATAML registry study
    Didi, Ibrahim
    Alliot, Jean -Marc
    Dumas, Pierre -Yves
    Vergez, Francois
    Tavitian, Suzanne
    Largeaud, Laetitia
    Bidet, Audrey
    Rieu, Jean-Baptiste
    Luquet, Isabelle
    Lechevalier, Nicolas
    Delabesse, Eric
    Sarry, Audrey
    De Grande, Anne -Charlotte
    Berard, Emilie
    Pigneux, Arnaud
    Recher, Christian
    Simoncini, David
    Bertoli, Sarah
    LEUKEMIA RESEARCH, 2024, 136