Understanding stacking fault energy of NbMoTaW multi-principal element alloys by interpretable machine learning

被引:0
|
作者
Li, Zefeng [1 ]
Li, Kaiqi [1 ]
Zhou, Jian [1 ]
Sun, Zhimei [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
关键词
Multi-principal element alloys; Stacking fault energy; Machine learning; Symbolic regression; Machine learning force fields; HIGH ENTROPY ALLOYS; SOLID-SOLUTION; STEELS; TEMPERATURE; BEHAVIOR; CREEP;
D O I
10.1016/j.jallcom.2024.175751
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Stacking fault energy (SFE) is a crucial property influencing the deformation mechanisms of multi-principal element alloys (MPEAs). However, experimentally measuring SFE and exploring composition space of MPEAs is challenging. This study explores the SFE in NbMoTaW by integrating machine learning force fields (ML-FF), molecular dynamics simulations (MD), neural networks, and symbolic regression (SR) methods. A SFE dataset containing 2000 different NbMoTaW compositions were generated by combining ML-FF and MD. Then the neural-network model was developed for SFE prediction with an accuracy of 0.981 and a mean absolute error of 0.020. Using SR, the valence electron concentration (VEC), average shear modulus (G), radii gamma (gamma) were identified as the key descriptors to determine SFE with the relationship of SFE1/40.307 & sdot;VEC+0.352 & sdot;(G+gamma). This work demonstrated a significant impact of chemical composition on SFE and established an accurate mathematical expression for SFE prediction, enhancing the understanding and alloy design of MPEAs.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A perspective on corrosion of multi-principal element alloys
    Birbilis, N.
    Choudhary, S.
    Scully, J. R.
    Taheri, M. L.
    NPJ MATERIALS DEGRADATION, 2021, 5 (01)
  • [22] Structure prediction of multi-principal element alloys using ensemble learning
    Choudhury, Amitava
    Konnur, Tanmay
    Chattopadhyay, P. P.
    Pal, Snehanshu
    ENGINEERING COMPUTATIONS, 2020, 37 (03) : 1003 - 1022
  • [23] A perspective on corrosion of multi-principal element alloys
    N. Birbilis
    S. Choudhary
    J. R. Scully
    M. L. Taheri
    npj Materials Degradation, 5
  • [24] Supervised machine learning for multi-principal element alloy structural design
    Berry, Joshua
    Christofidou, Katerina A.
    MATERIALS SCIENCE AND TECHNOLOGY, 2024,
  • [25] Machine-learning-guided descriptor selection for predicting corrosion resistance in multi-principal element alloys
    Roy, Ankit
    Taufique, M. F. N.
    Khakurel, Hrishabh
    Devanathan, Ram
    Johnson, Duane D.
    Balasubramanian, Ganesh
    NPJ MATERIALS DEGRADATION, 2022, 6 (01)
  • [26] Machine-learning-guided descriptor selection for predicting corrosion resistance in multi-principal element alloys
    Ankit Roy
    M. F. N. Taufique
    Hrishabh Khakurel
    Ram Devanathan
    Duane D. Johnson
    Ganesh Balasubramanian
    npj Materials Degradation, 6
  • [27] Composition driven machine learning for unearthing high-strength lightweight multi-principal element alloys
    Li, Mengxing
    Quek, Xiu Kun
    Suo, Hongli
    Wuu, Delvin
    Lee, Jing Jun
    Teh, Wei Hock
    Wei, Fengxia
    Made, Riko I.
    Tan, Dennis Cheng Cheh
    Ng, Si Rong
    Wei, Siyuan
    Low, Andre Kai Yuan
    Hippalgaonkar, Kedar
    Lim, Yee-Fun
    Wang, Pei
    Ng, Chee Koon
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1008
  • [28] Integrating atomistic simulations and machine learning to design multi-principal element alloys with superior elastic modulus
    Michael Grant
    M. Ross Kunz
    Krithika Iyer
    Leander I. Held
    Tolga Tasdizen
    Jeffery A. Aguiar
    Pratik P. Dholabhai
    Journal of Materials Research, 2022, 37 : 1497 - 1512
  • [29] Integrating atomistic simulations and machine learning to design multi-principal element alloys with superior elastic modulus
    Grant, Michael
    Kunz, M. Ross
    Iyer, Krithika
    Held, Leander, I
    Tasdizen, Tolga
    Aguiar, Jeffery A.
    Dholabhai, Pratik P.
    JOURNAL OF MATERIALS RESEARCH, 2022, 37 (08) : 1497 - 1512
  • [30] Interpretable phase structure and hardness prediction of multi-principal element alloys through ensemble learning ( Vol 131 , 225 , 2025)
    Li, Xiaohui
    Li, Zicong
    Hou, Chenghao
    Zhou, Nan
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2025, 131 (04):