Research on ELoran Demodulation Algorithm Based on Multiclass Support Vector Machine

被引:2
作者
Liu, Shiyao [1 ,2 ]
Yan, Baorong [1 ,2 ]
Guo, Wei [1 ,2 ]
Hua, Yu [1 ,2 ]
Zhang, Shougang [1 ,3 ,4 ]
Lu, Jun [5 ]
Xu, Lu [5 ]
Yang, Dong [6 ]
机构
[1] Chinese Acad Sci, Natl Time Serv Ctr, Xian 710600, Peoples R China
[2] Chinese Acad Sci, Key Lab Precise Positioning & Timing Technol, Xian 710600, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[4] Chinese Acad Sci, Key Lab Time & Frequency Stand, Xian 710600, Peoples R China
[5] Chengdu Univ Informat Technol, Sch Software Engn, Chengdu 610225, Peoples R China
[6] Sichuan Meteorol Serv Ctr, Chengdu 610072, Peoples R China
关键词
eLoran; demodulation; multiclass support vector machine; machine learning; RANDOM FOREST CLASSIFIER; LORAN DATA MODULATION;
D O I
10.3390/rs16173349
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Demodulation and decoding are pivotal for the eLoran system's timing and information transmission capabilities. This paper proposes a novel demodulation algorithm leveraging a multiclass support vector machine (MSVM) for pulse position modulation (PPM) of eLoran signals. Firstly, the existing demodulation method based on envelope phase detection (EPD) technology is reviewed, highlighting its limitations. Secondly, a detailed exposition of the MSVM algorithm is presented, demonstrating its theoretical foundations and comparative advantages over the traditional method and several other methods proposed in this study. Subsequently, through comprehensive experiments, the algorithm parameters are optimized, and the parallel comparison of different demodulation methods is carried out in various complex environments. The test results show that the MSVM algorithm is significantly superior to traditional methods and other kinds of machine learning algorithms in demodulation accuracy and stability, particularly in high-noise and -interference scenarios. This innovative algorithm not only broadens the design approach for eLoran receivers but also fully meets the high-precision timing service requirements of the eLoran system.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] A heuristic algorithm to incremental support vector machine learning
    Li, ZW
    Zhang, JP
    Yang, J
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 1764 - 1767
  • [32] Detection of Epileptic Seizures with Support Vector Machine Algorithm
    Sakaci, Furkan Hasan
    Cetiner, Emine
    Yener, Suayb Cagri
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [33] A divisional incremental training algorithm of Support Vector Machine
    Zhang, Jianpei
    Li, Zhongwei
    Yang, Jing
    2005 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATIONS, VOLS 1-4, CONFERENCE PROCEEDINGS, 2005, : 853 - 856
  • [34] Latent semantic text classification method research based on support vector machine
    Lu Q.
    Wang Y.
    International Journal of Information and Communication Technology, 2019, 15 (03) : 243 - 255
  • [35] Video-based Yogasan classification for the musculoskeletal disorder using the Cervus trail dependent multiclass support vector machine
    Nandyal, Suvarna
    Dhanyal, Somashekhar S.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (03) : 837 - 855
  • [36] Design of intelligent sprayer control for an autonomous farming drone using a multiclass support vector machine
    Turnip, Arjon
    Taufik, Mohammad
    OPEN AGRICULTURE, 2024, 9 (01):
  • [37] Time series online prediction algorithm based on least squares support vector machine
    Wu Qiong
    Liu Wen-ying
    Yang Yi-han
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2007, 14 (03): : 442 - 446
  • [38] Time series online prediction algorithm based on least squares support vector machine
    吴琼
    刘文颖
    杨以涵
    JournalofCentralSouthUniversityofTechnology, 2007, (03) : 442 - 446
  • [39] Time series online prediction algorithm based on least squares support vector machine
    Qiong Wu
    Wen-ying Liu
    Yi-han Yang
    Journal of Central South University of Technology, 2007, 14 : 442 - 446
  • [40] A feedforward method based on support vector machine
    Mao, Yao
    He, Qiunong
    Zhou, Xi
    Li, Zhijun
    Liu, Qiong
    Zhang, Chao
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2259 - 2264