An instability framework of Hopf-Turing-Turing singularity in 2-component reaction-diffusion systems

被引:0
作者
Izuhara, Hirofumi [1 ]
Kobayashi, Shunusuke [1 ]
机构
[1] Univ Miyazaki, Fac Engn, 1-1 Gakuen Kibanadainishi, Miyazaki 8892192, Japan
基金
日本学术振兴会;
关键词
Reaction-diffusion system; Pattern formation; Bifurcation analysis; Normal form; SPATIOTEMPORAL CHAOS; HETEROCLINIC CYCLES; PERIODIC-ORBITS; BIFURCATION; DYNAMICS; MODEL;
D O I
10.1007/s13160-024-00668-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates pattern formation in 2-component reaction-diffusion systems with linear diffusion and local reaction terms. We propose a novel instability framework characterized by 0-mode Hopf instability, m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{m}$$\end{document} and m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{m}$$\end{document} + 1 mode Turing instabilities in 2-component reaction-diffusion systems. A normal form for the codimension 3 bifurcation is derived via the center manifold reduction, representing one of the main results in this paper. Additionally, we present numerical results on the bifurcation of certain reaction-diffusion systems and on the chaotic behavior of the normal form.
引用
收藏
页码:63 / 112
页数:50
相关论文
共 37 条
  • [1] UNSTABLE SUBSYSTEMS CAUSE TURING INSTABILITY
    Anma, Atsushi
    Sakamoto, Kunimochi
    Yoneda, Tohru
    [J]. KODAI MATHEMATICAL JOURNAL, 2012, 35 (02) : 215 - 247
  • [2] HETEROCLINIC CYCLES AND MODULATED TRAVELING WAVES IN SYSTEMS WITH O(2) SYMMETRY
    ARMBRUSTER, D
    GUCKENHEIMER, J
    HOLMES, P
    [J]. PHYSICA D, 1988, 29 (03): : 257 - 282
  • [3] Crandall MG., 1971, J FUNCT ANAL, V8, P321
  • [4] Dangelmayr G., 1986, Dyn. Stab. Syst, V1, P159
  • [5] Hopf-pitchfork singularities in coupled systems
    Drubi, Fatima
    Ibanez, Santiago
    Angel Rodriguez, J.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (9-10) : 825 - 840
  • [6] A PICTURE OF THE GLOBAL BIFURCATION DIAGRAM IN ECOLOGICAL INTERACTING AND DIFFUSING SYSTEMS
    FUJII, H
    MIMURA, M
    NISHIURA, Y
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1982, 5 (01) : 1 - 42
  • [7] A LINK BETWEEN MICROSCOPIC AND MACROSCOPIC MODELS OF SELF-ORGANIZED AGGREGATION
    Funaki, Tadahisa
    Izuhara, Hirofumi
    Mimura, Masayasu
    Urabe, Chiyori
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2012, 7 (04) : 705 - 740
  • [8] Guckenheimer J., 1983, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, DOI DOI 10.1007/978-1-4612-1140-2
  • [9] Haragus M, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-0-85729-112-7
  • [10] A review on reaction–diffusion approximation
    Iida M.
    Ninomiya H.
    Yamamoto H.
    [J]. Journal of Elliptic and Parabolic Equations, 2018, 4 (2) : 565 - 600