Linking meta-learning to meta-structure

被引:0
作者
Schilling, Malte [1 ]
Ritter, Helge J. [2 ]
Ohl, Frank W. [3 ,4 ]
机构
[1] Univ Munster, Comp Sci Dept, Autonomous Intelligent Syst Grp, Munster, Germany
[2] Bielefeld Univ, Fac Technol, CITEC, Neuroinformat Grp, Bielefeld, Germany
[3] Leibniz Inst Neurobiol, Dept Syst Physiol Learning, Magdeburg, Germany
[4] Otto Von Guericke Univ, Inst Biol, Magdeburg, Germany
关键词
D O I
10.1017/S0140525X24000232
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
We propose that a principled understanding of meta-learning, as aimed for by the authors, benefits from linking the focus on learning with an equally strong focus on structure, which means to address the question: What are the meta-structures that can guide meta-learning?
引用
收藏
页数:58
相关论文
共 7 条
  • [1] How animals move: An integrative view
    Dickinson, MH
    Farley, CT
    Full, RJ
    Koehl, MAR
    Kram, R
    Lehman, S
    [J]. SCIENCE, 2000, 288 (5463) : 100 - 106
  • [2] Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex
    Happel, Max F. K.
    Niekisch, Hartmut
    Rivera, Laura L. Castiblanco
    Ohl, Frank W.
    Deliano, Matthias
    Frischknecht, Renato
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (07) : 2800 - 2805
  • [3] Reversal Learning in Humans and Gerbils: Dynamic Control Network Facilitates Learning
    Jarvers, Christian
    Brosch, Tobias
    Brechmann, Andre
    Woldeit, Marie L.
    Schulz, Andreas L.
    Ohl, Frank W.
    Lommerzheim, Marcel
    Neumann, Heiko
    [J]. FRONTIERS IN NEUROSCIENCE, 2016, 10
  • [4] Hierarchical motor control in mammals and machines
    Merel, Josh
    Botvinick, Matthew
    Wayne, Greg
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] Reinforcement learning in artificial and biological systems
    Neftci, Emre O.
    Averbeck, Bruno B.
    [J]. NATURE MACHINE INTELLIGENCE, 2019, 1 (03) : 133 - 143
  • [6] Modularity in Nervous Systems-a Key to Efficient Adaptivity for Deep Reinforcement Learning
    Schilling, Malte
    Hammer, Barbara
    Ohl, Frank W.
    Ritter, Helge J.
    Wiskott, Laurenz
    [J]. COGNITIVE COMPUTATION, 2024, 16 (05) : 2358 - 2373
  • [7] Decentralized control and local information for robust and adaptive decentralized Deep Reinforcement Learning
    Schilling, Malte
    Melnik, Andrew
    Ohl, Frank W.
    Ritter, Helge J.
    Hammer, Barbara
    [J]. NEURAL NETWORKS, 2021, 144 : 699 - 725