The Role of Gas-Liquid Interface in Controlling the Reactivity of Air Dielectric Barrier Discharge Plasma Activated Water

被引:0
作者
Zhou, Zhenyu [1 ]
Qi, Zhihua [2 ]
Zhao, Xu [1 ]
Liu, Dongping [1 ]
Ni, Weiyuan [1 ]
机构
[1] Dalian Univ Technol, Sch Elect Engn, Dalian 116024, Peoples R China
[2] Shenyang Inst Engn, Basic Teaching Dept, Shenyang 110136, Peoples R China
基金
中国国家自然科学基金;
关键词
Plasma activated water; Bubble; Airflow rate; Gas-liquid interface; Gas-liquid mass transfer; Chemical reactivity; Biological reactivity; OZONE; INACTIVATION; DIFFUSION; CHEMISTRY; BUBBLES; FOOD;
D O I
10.1007/s11090-024-10508-1
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Plasma activated water (PAW) has been prepared using atmospheric pressure air dielectric barrier discharge with the bubbling method. This study aims to elucidate the crucial role of gas-liquid interface in determining the physicochemical properties and biological reactivity of PAW, as well as describe the process of mass transfer for reactive oxygen and nitrogen species (RONS) during the PAW generation. Gas-liquid interfacial area is regulated by varying the airflow rate. When the airflow rate increases from 0.5 to 16.0 SLM, the concentrations of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:\text{N}{\text{O}}_{\text{2}}<^>{\text{-}}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:\text{N}{\text{O}}_{\text{3}}<^>{\text{-}}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{\text{O}}_{\text{3}}$$\end{document} and activated oxygen in PAW increase significantly, and the water-activated time for complete E. coli inactivation can be shortened from more than 320 s to 40 s. The numerical simulation result shows that when the airflow rate increases from 0.5 to 16.0 SLM, the gas-liquid interfacial area increases from 0.014 to 0.3 m2/600 mL. The analysis shows that the dependence of the chemical reactivity and the biological reactivity on the interface area is mainly attributed to the change of the mass flux with the interface area.
引用
收藏
页码:2137 / 2152
页数:16
相关论文
共 50 条
  • [1] Ozone degradation of biological macromolecules: Proteins, hemoglobin, RNA, and DNA
    Cataldo, Franco
    [J]. OZONE-SCIENCE & ENGINEERING, 2006, 28 (05) : 317 - 328
  • [2] Plasma-Activated Hydrogels for Microbial Disinfection
    Chen, Jinkun
    Wang, Zifeng
    Sun, Jiachen
    Zhou, Renwu
    Guo, Li
    Zhang, Hao
    Liu, Dingxin
    Rong, Mingzhe
    Ostrikov, Kostya
    [J]. ADVANCED SCIENCE, 2023, 10 (14)
  • [3] Potential Agricultural and Biomedical Applications of Cold Atmospheric Plasma-Activated Liquids With Self-Organized Patterns Formed at the Interface
    Chen, Zhitong
    Xu, Rong-Guang
    Chen, Peijian
    Wang, Qiu
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2020, 48 (10) : 3455 - 3471
  • [4] Antimicrobial Effect of Plasma-Activated Tap Water on Staphylococcus aureus, Escherichia coli, and Candida albicans
    Chiappim, William
    Sampaio, Aline da Graca
    Miranda, Felipe
    Fraga, Mariana
    Petraconi, Gilberto
    da Silva Sobrinho, Argemiro
    Kostov, Konstantin
    Koga-Ito, Cristiane
    Pessoa, Rodrigo
    [J]. WATER, 2021, 13 (11)
  • [5] Vulnerability of SARS-CoV-2 and PR8 H1N1 virus to cold atmospheric plasma activated media
    Daniel Cortazar, Osvaldo
    Megia-Macias, Ana
    Moreno, Sandra
    Brun, Alejandro
    Gomez-Casado, Eduardo
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [6] Microbubble-enhanced water activation by cold plasma
    Gao, Yawen
    Li, Mingbo
    Sun, Chao
    Zhang, Xuehua
    [J]. CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [7] Temperature dependence of Henry's law constant in an extended temperature range
    Görgényi, M
    Dewulf, J
    Van Langenhove, H
    [J]. CHEMOSPHERE, 2002, 48 (07) : 757 - 762
  • [8] Plasma-activated water production and its application in agriculture
    Guo, Dingmeng
    Liu, Hongxia
    Zhou, Lei
    Xie, Jinzhuo
    He, Chi
    [J]. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2021, 101 (12) : 4891 - 4899
  • [9] Plasma-activated water: An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection
    Guo, Li
    Yao, Zhiqian
    Yang, Lu
    Zhang, Hao
    Qi, Yu
    Gou, Lu
    Xi, Wang
    Liu, Dingxin
    Zhang, Lei
    Cheng, Yilong
    Wang, Xiaohua
    Rong, Mingzhe
    Chen, Hailan
    Kong, Michael G.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 421
  • [10] Hybrid plasma discharges for energy-efficient production of plasma-activated water
    Hadinoto, Koentadi
    Rao, N. R. H.
    Astorga, Javiera Barrales
    Zhou, Renwu
    Biazik, Joanna
    Zhang, Tianqi
    Masood, Hassan
    Cullen, Patrick J.
    Prescott, Stuart
    Henderson, Rita K.
    Trujillo, Francisco J.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2023, 451