Formal Verification of Neural Networks: A "Step Zero" Approach for Vehicle Detection

被引:0
作者
Guidotti, Dario [1 ]
Pandolfo, Laura [1 ]
Pulina, Luca [1 ]
机构
[1] Univ Sassari, DUMAS, Via Roma 151, I-07100 Sassari, Italy
来源
ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, IEA-AIE 2024 | 2024年 / 14748卷
关键词
Trustworthy AI; Neural Networks; Vehicle Detection; Formal Verification; Cyber-Physical Systems;
D O I
10.1007/978-981-97-4677-4_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper delves into the verification of Convolutional Neural Networks for the crucial task of identifying vehicles in automotive images. Given the complexity and verifiability challenges of traditional object detection models, we propose a "step zero" approach, focusing on certifying the robustness of classification models for vehicle recognition. Our research paves the way for utilising these certified models as a potential safety net in future applications. While not yet empirically tested alongside object detection models, this approach offers promising prospects for reducing the risk of false negatives, contributing to the development of dependable AI systems in the automotive domain.
引用
收藏
页码:297 / 309
页数:13
相关论文
共 52 条
[1]  
[Anonymous], 2023, Vehicle Detection Image Set
[2]   Improved Geometric Path Enumeration for Verifying ReLU Neural Networks [J].
Bak, Stanley ;
Hoang-Dung Tran ;
Hobbs, Kerianne ;
Johnson, Taylor T. .
COMPUTER AIDED VERIFICATION (CAV 2020), PT I, 2020, 12224 :66-96
[3]  
Bunel R, 2020, J MACH LEARN RES, V21
[4]  
Demarchi S., 2022, P 36 ECMS INT C MOD, P310, DOI [10.7148/2022-0310, DOI 10.7148/2022-0310]
[5]  
Demarchi S., 2022, CEUR Workshop Proceedings, V3252
[6]  
Eramo R., 2022, CEUR Workshop Proceedings, V3345
[7]  
Ferrari C., 2022, 10 INT C LEARN REPR
[8]   ROAD-R: the autonomous driving dataset with logical requirements [J].
Giunchiglia, Eleonora ;
Stoian, Mihaela Catalina ;
Khan, Salman ;
Cuzzolin, Fabio ;
Lukasiewicz, Thomas .
MACHINE LEARNING, 2023, 112 (09) :3261-3291
[9]  
Giunchiglia E, 2022, PROCEEDINGS OF THE THIRTY-FIRST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2022, P5478
[10]   RNN-SURV: A Deep Recurrent Model for Survival Analysis [J].
Giunchiglia, Eleonora ;
Nemchenko, Anton ;
van der Schaar, Mihaela .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 :23-32