Physical aging of a glassy polymer in cultural heritage conservation

被引:0
|
作者
Rharbi, Yahya [1 ]
Hugenell, Frederic [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, LRP, F-38000 Grenoble, France
关键词
coating; cultural heritage conservation; Laropal A81 resin; physical aging; structural recovery; ENTHALPY RECOVERY; STRUCTURAL RELAXATION; MOLECULAR-WEIGHT; REFRACTIVE-INDEX; HEAT-CAPACITY; TRANSITION TEMPERATURE; AMORPHOUS POLYMERS; VOLUME RELAXATION; THERMAL-BEHAVIOR; FILMS;
D O I
10.1002/pol.20240449
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Artworks, particularly easel paintings, are multi-component materials intended to last indefinitely. The protective coatings applied to these artworks often consist of amorphous glass-like polymers, which undergo slow physical aging and structural recovery below their glass transition temperature. This process alters key physical properties such as mechanical strength, optical clarity, and thermal stability over extended periods. This study investigates the time-dependent evolution of these properties in Laropal A81, a widely used synthetic resin for cultural heritage conservation, particularly as a replacement for ancient varnishes. The investigation involves characterization of enthalpy recovery via differential scanning calorimetry, refractive index evolution via refractometry, and creep compliance evolution via rheological measurements. The aging behavior of Laropal A81 is further analyzed using the Kohlrausch-Williams-Watts function and the Tool-Narayanaswamy-Moynihan model, enabling the quantification of critical dynamic parameters such as activation energy, nonlinearity, partition coefficients, and non-exponentiality. The gained insights into the long-term behavior of this coating's properties can be valuable for improving preservation and restoration strategies for cultural heritage. image
引用
收藏
页码:5232 / 5244
页数:13
相关论文
共 50 条
  • [1] Importance of Quench Conditions on the Subsequent Physical Aging Rate of Glassy Polymer Films
    Gray, Laura A. G.
    Yoon, Suk W.
    Pahner, William A.
    Davidheiser, James E.
    Roth, Connie B.
    MACROMOLECULES, 2012, 45 (03) : 1701 - 1709
  • [2] Physical aging of ultrathin glassy polymer films tracked by gas permeability
    Rowe, Brandon W.
    Freeman, Benny D.
    Paul, Donald R.
    POLYMER, 2009, 50 (23) : 5565 - 5575
  • [3] Physical aging of layered glassy polymer films via gas permeability tracking
    Murphy, Thomas M.
    Langhe, D. S.
    Ponting, M.
    Baer, E.
    Freeman, B. D.
    Paul, D. R.
    POLYMER, 2011, 52 (26) : 6117 - 6125
  • [4] Comparison of Physical Aging and Glass Transition in Glassy-Rubbery Polymer Bilayer Films
    Mcguire, Jennifer A.
    Merrill, James H.
    Couturier, Alexander A.
    Thees, Michael F.
    Roth, Connie B.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2025, 129 (10): : 2778 - 2788
  • [5] The very long-term physical aging of glassy polymers
    Perez-De Eulate, Natalia G.
    Cangialosi, Daniele
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (18) : 12356 - 12361
  • [6] Physical aging of thin glassy polymer films: Free volume interpretation
    Huang, Y.
    Wang, X.
    Paul, D. R.
    JOURNAL OF MEMBRANE SCIENCE, 2006, 277 (1-2) : 219 - 229
  • [7] Physical Aging Behavior of a Glassy Polyether
    Monnier, Xavier
    Marina, Sara
    Lopez de Pariza, Xabier
    Sardon, Haritz
    Martin, Jaime
    Cangialosi, Daniele
    POLYMERS, 2021, 13 (06)
  • [8] Effect of Adjacent Rubbery Layers on the Physical Aging of Glassy Polymers
    Rauscher, Phillip M.
    Pye, Justin E.
    Baglay, Roman R.
    Roth, Connie B.
    MACROMOLECULES, 2013, 46 (24) : 9806 - 9817
  • [9] Physical aging of thin glassy polymer films monitored by gas permeability
    Huang, Y
    Paul, DR
    POLYMER, 2004, 45 (25) : 8377 - 8393
  • [10] Control of Physical Aging in Super-Glassy Polymer Mixed Matrix Membranes
    Smith, Stefan J. D.
    Hou, Rujing
    Konstas, Kristina
    Akram, Ammara
    Lau, Cher Hon
    Hill, Matthew R.
    ACCOUNTS OF CHEMICAL RESEARCH, 2020, 53 (07) : 1381 - 1388