Facet orientation control of tin-lead perovskite for efficient all-perovskite tandem solar cells

被引:2
作者
Wu, Yulin [1 ,2 ]
Wu, Shan [3 ]
Wang, Jinyao [1 ,2 ]
Lu, Jiangying [3 ]
Zheng, Xu [1 ,2 ]
Lu, Shudi [4 ]
Yue, Shizhong [1 ,2 ]
Liu, Kong [1 ,2 ]
Wang, Zhijie [1 ,2 ]
Qu, Shengchun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Lab Solid State Optoelect Informat Technol, Beijing Key Lab Low Dimens Semicond Mat & Devices,, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Guangxi Univ, Dept Sch Chem & Chem Engn, Nanning 530004, Peoples R China
[4] Hebei Normal Univ Sci & Technol, Dept Phys, Qinhuangdao 066004, Peoples R China
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2025年 / 213卷
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Sn-Pb perovskite; All-perovskite tandem solar cells; Facet orientation; Crystal plane stacking; FILMS;
D O I
10.1016/j.jmst.2024.06.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Developing high-performance narrow-bandgap (NBG) perovskite solar cells based on tin-lead (Sn-Pb) perovskite is critical for the advancement of all-perovskite tandem solar cells. However, the limitations of the device current density and efficiency are magnified by the issues concerning poor carrier transport caused by a substantial number of defects in thick NBG films. This problem is further exacerbated by the quality of film crystallization, which is associated with the rapid and uncontrolled crystallization of Snrich perovskite chemistry using the antisolvent approach. We regulate the crystallization of Sn-contained perovskite with a mild gas-quench approach to fabricate a highly crystal-oriented and well-arranged NBG perovskite absorber. This strategy effectively boosts electron transport and light absorption of the NBG perovskite. Consequently, the average power conversion efficiency (PCE) of the NBG perovskite solar cells increases from 19.50 % to 21.18 %, with the best device achieving an excellent PCE of 21.84 %. Furthermore, when combined with a wide-bandgap perovskite subcell to form an all-perovskite tandem solar cell, a PCE of 25.23 % is achieved. After being stored in the glovebox for 10 0 0 h, the unencapsulated device maintains over 90 % of its initial PCE, demonstrating long-term stability and durability. This work presents a promising approach for developing high-efficiency NBG perovskite solar cells. (c) 2024 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:118 / 124
页数:7
相关论文
共 47 条
[1]   Perovskite Solar Cells Consisting of PTAA Modified with Monomolecular Layer and Application to All-Perovskite Tandem Solar Cells with Efficiency over 25% [J].
Bi, Huan ;
Fujiwara, Yasuhiro ;
Kapil, Gaurav ;
Tavgeniene, Daiva ;
Zhang, Zheng ;
Wang, Liang ;
Ding, Chao ;
Sahamir, Shahrir Razey ;
Baranwal, Ajay Kumar ;
Sanehira, Yoshitaka ;
Takeshi, Kitamura ;
Shi, Guozheng ;
Bessho, Takeru ;
Segawa, Hiroshi ;
Grigalevicius, Saulius ;
Shen, Qing ;
Hayase, Shuzi .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (32)
[2]   Controlling Thin-Film Stress and Wrinkling during Perovskite Film Formation [J].
Bush, Kevin A. ;
Rolston, Nicholas ;
Gold-Parker, Aryeh ;
Manzoor, Salman ;
Hausele, Jakob ;
Yu, Zhengshan J. ;
Raiford, James A. ;
Cheacharoen, Rongrong ;
Holman, Zachary C. ;
Toney, Michael F. ;
Dauskardt, Reinhold H. ;
McGehee, Michael D. .
ACS ENERGY LETTERS, 2018, 3 (06) :1225-1232
[3]   Regulating surface potential maximizes voltage in all-perovskite tandems [J].
Chen, Hao ;
Maxwell, Aidan ;
Li, Chongwen ;
Teale, Sam ;
Chen, Bin ;
Zhu, Tong ;
Ugur, Esma ;
Harrison, George ;
Grater, Luke ;
Wang, Junke ;
Wang, Zaiwei ;
Zeng, Lewei ;
Park, So Min ;
Chen, Lei ;
Serles, Peter ;
Awni, Rasha Abbas ;
Subedi, Biwas ;
Zheng, Xiaopeng ;
Xiao, Chuanxiao ;
Podraza, Nikolas J. ;
Filleter, Tobin ;
Liu, Cheng ;
Yang, Yi ;
Luther, Joseph M. ;
De Wolf, Stefaan ;
Kanatzidis, Mercouri G. ;
Yan, Yanfa ;
Sargent, Edward H. .
NATURE, 2023, 613 (7945) :676-+
[4]   Monolithic perovskite/silicon tandem solar cells offer an efficiency over 29% [J].
Chen, Shi ;
Zuo, Chuantian ;
Xu, Baomin ;
Ding, Liming .
JOURNAL OF SEMICONDUCTORS, 2021, 42 (12)
[5]   Design of an Inorganic Mesoporous Hole-Transporting Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells [J].
Chen, Yu ;
Yang, Zhou ;
Wang, Shubo ;
Zheng, Xiaojia ;
Wu, Yihui ;
Yuan, Ningyi ;
Zhang, Wen-Hua ;
Liu, Shengzhong .
ADVANCED MATERIALS, 2018, 30 (52)
[6]   Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films [J].
Cho, Namchul ;
Li, Feng ;
Turedi, Bekir ;
Sinatra, Lutfan ;
Sarmah, Smritakshi P. ;
Parida, Manas R. ;
Saidaminov, Makhsud I. ;
Murali, Banavoth ;
Burlakov, Victor M. ;
Goriely, Alain ;
Mohammed, Omar F. ;
Wu, Tom ;
Bakr, Osman M. .
NATURE COMMUNICATIONS, 2016, 7
[7]   Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals [J].
Dong, Qingfeng ;
Fang, Yanjun ;
Shao, Yuchuan ;
Mulligan, Padhraic ;
Qiu, Jie ;
Cao, Lei ;
Huang, Jinsong .
SCIENCE, 2015, 347 (6225) :967-970
[8]   Organic ammonium halides enhance the performance of Pb-Sn perovskite solar cells [J].
Fang, Zhimin ;
Zhang, Lixiu ;
Liu, Shengzhong ;
Ding, Liming .
JOURNAL OF SEMICONDUCTORS, 2022, 43 (12)
[9]   Improving interface quality for 1-cm2 all-perovskite tandem solar cells [J].
He, Rui ;
Wang, Wanhai ;
Yi, Zongjin ;
Lang, Felix ;
Chen, Cong ;
Luo, Jincheng ;
Zhu, Jingwei ;
Thiesbrummel, Jarla ;
Shah, Sahil ;
Wei, Kun ;
Luo, Yi ;
Wang, Changlei ;
Lai, Huagui ;
Huang, Hao ;
Zhou, Jie ;
Zou, Bingsuo ;
Yin, Xinxing ;
Ren, Shengqiang ;
Hao, Xia ;
Wu, Lili ;
Zhang, Jingquan ;
Zhang, Jinbao ;
Stolterfoht, Martin ;
Fu, Fan ;
Tang, Weihua ;
Zhao, Dewei .
NATURE, 2023, 618 (7963) :80-+
[10]   Optimized carrier extraction at interfaces for 23.6% efficient tin-lead perovskite solar cells [J].
Hu, Shuaifeng ;
Otsuka, Kento ;
Murdey, Richard ;
Nakamura, Tomoya ;
Minh Anh Truong ;
Yamada, Takumi ;
Handa, Taketo ;
Matsuda, Kazuhiro ;
Nakano, Kyohei ;
Sato, Atsushi ;
Marumoto, Kazuhiro ;
Tajima, Keisuke ;
Kanemitsu, Yoshihiko ;
Wakamiya, Atsushi .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (05) :2096-2107