The small mass limit for a McKean-Vlasov equation with state-dependent friction

被引:0
作者
Shi, Chungang [1 ]
Wang, Mengmeng [2 ]
Lv, Yan [1 ]
Wang, Wei [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
[2] Nanjing Inst Technol, Sch Math & Phys, Nanjing, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
The small mass limit; Smoluchowski-Kramers approximation; State-dependent friction; McKean-Vlasov equation; Averaging; MEAN-FIELD LIMIT; DYNAMICS; PARTICLE; SYSTEMS;
D O I
10.1016/j.jde.2024.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The small mass limit is derived for a McKean-Vlasov equation with state-dependent friction which is a matrix-valued function. By applying the averaging approach to a non-autonomous slow-fast system with the microscopic and macroscopic scales, the convergence in distribution is obtained. (c) 2024 Published by Elsevier Inc.
引用
收藏
页码:315 / 348
页数:34
相关论文
共 27 条
  • [1] Solution formulas for differential Sylvester and Lyapunov equations
    Behr, Maximilian
    Benner, Peter
    Heiland, Jan
    [J]. CALCOLO, 2019, 56 (04)
  • [2] Bellman R., 1997, INTRO MATRIX ANAL
  • [3] STOCHASTIC MEAN-FIELD LIMIT: NON-LIPSCHITZ FORCES AND SWARMING
    Bolley, Francois
    Canizo, Jose A.
    Carrillo, Jose A.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11) : 2179 - 2210
  • [4] Mean-Field Limits: From Particle Descriptions to Macroscopic Equations
    Carrillo, Jose A.
    Choi, Young-Pil
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 241 (03) : 1529 - 1573
  • [5] Quantified overdamped limit for kinetic Vlasov-Fokker-Planck equations with singular interaction forces
    Choi, Young-Pil
    Tse, Oliver
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 330 : 150 - 207
  • [6] On the mathematics of emergence
    Cucker, Felipe
    Smale, Steve
    [J]. JAPANESE JOURNAL OF MATHEMATICS, 2007, 2 (01): : 197 - 227
  • [8] First-order aggregation models and zero inertia limits
    Fetecau, R. C.
    Sun, W.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (11) : 6774 - 6802
  • [9] First-order aggregation models with alignment
    Fetecau, Razvan C.
    Sun, Weiran
    Tan, Changhui
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2016, 325 : 146 - 163
  • [10] Some remarks on the Smoluchowski-Kramers approximation
    Freidlin, M
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (3-4) : 617 - 634