Recent advances of ruthenium-based materials for acidic oxygen evolution reaction: from catalyst design to proton exchange membrane water electrolysers

被引:9
作者
Wang, Lin-Lin [1 ]
Yu, Zi-You [1 ]
Lu, Tong-Bu [1 ]
机构
[1] Tianjin Univ Technol, Inst New Energy Mat & Low Carbon Technol, Sch Mat Sci & Engn, MOE Int Joint Lab Mat Microstruct, Tianjin 300384, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
ELECTRODE ASSEMBLIES; HYDROGEN ECONOMY; HIGH-PERFORMANCE; OXIDES; RUO2; ELECTROCATALYSTS; OPTIMIZATION; FUNDAMENTALS; RUO2(110); EFFICIENT;
D O I
10.1039/d4ta02337d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Harvesting renewable energy to split water offers an ideal approach to the production of clean hydrogen energy. Among various water electrolysis devices, the proton exchange membrane water electrolyser (PEMWE) with a high current density, quick response operation, and compact design has attracted much attention. The anodic oxygen evolution reaction (OER) in an acidic electrolyte seriously relies on iridium-based catalysts, but their use is limited owing to their scarcity and high cost. Ruthenium (Ru)-based catalysts have been considered as the most promising candidates to replace Ir in acidic OER, due to their low cost and high activity. Nevertheless, there is still much room to enhance the OER activity and durability of Ru-based catalysts for the practical application in PEMWEs. Herein, we first give a brief introduction of the main configuration and operating factors of PEMWEs. Then we discuss three OER mechanisms and reasons for the degradation of Ru-based catalysts in acid. Afterwards, the performance improvement strategies of Ru-based acidic OER catalysts are emphatically summarized. We further spotlight some typical examples of PEMWEs using Ru-based OER catalysts as anodes. Finally, further challenges and directions in the development of high-performance Ru-based OER catalysts in PEMWEs are offered and speculated. In this review paper, we emphatically summarize the improvement strategies of Ru-based acidic OER catalysts and their application in PEMWEs. Further challenges and directions in the development of Ru-based catalysts are also speculated.
引用
收藏
页码:23297 / 23314
页数:18
相关论文
共 145 条
[1]   Manipulating the Corrosion Resistance of SnO2 Aerogels through Doping for Efficient and Durable Oxygen Evolution Reaction Electrocatalysis in Acidic Media [J].
Abbou, Sofyane ;
Chattot, Raphael ;
Martin, Vincent ;
Claudel, Fabien ;
Sola-Hernandez, Lluis ;
Beauger, Christian ;
Dubau, Laetitia ;
Maillard, Frederic .
ACS CATALYSIS, 2020, 10 (13) :7283-7294
[2]   Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources [J].
Arico, A. S. ;
Siracusano, S. ;
Briguglio, N. ;
Baglio, V. ;
Di Blasi, A. ;
Antonucci, V. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2013, 43 (02) :107-118
[3]   Elaboration and characterization of ruthenium nano-oxides for the oxygen evolution reaction in a Proton Exchange Membrane Water Electrolyzer supplied by a solar profile [J].
Audichon, Thomas ;
Mayousse, Eric ;
Napporn, Teko W. ;
Morais, Claudia ;
Comminges, Clement ;
Kokoh, K. Boniface .
ELECTROCHIMICA ACTA, 2014, 132 :284-291
[4]   The hydrogen economy in the 21st century: a sustainable development scenario [J].
Barreto, L ;
Makihira, A ;
Riahi, K .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2003, 28 (03) :267-284
[5]   Influence of Ionomer Content in IrO2/TiO2 Electrodes on PEM Water Electrolyzer Performance [J].
Bernt, Maximilian ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) :F3179-F3189
[6]   Growth of One-Dimensional RuO2 Nanowires on g-Carbon Nitride: An Active and Stable Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution Reactions at All pH Values [J].
Bhowmik, Tanmay ;
Kundu, Manas Kumar ;
Barman, Sudip .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (42) :28678-28688
[7]   The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment [J].
Bockris, JOM .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (7-8) :731-740
[8]   Optimization of anodic porous transport electrodes for proton exchange membrane water electrolyzers [J].
Buehler, Melanie ;
Hegge, Friedemann ;
Holzapfel, Peter ;
Bierling, Markus ;
Suermann, Michel ;
Vierrath, Severin ;
Thiele, Simon .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (47) :26984-26995
[9]   Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction [J].
Cao, Linlin ;
Luo, Qiquan ;
Chen, Jiajia ;
Wang, Lan ;
Lin, Yue ;
Wang, Huijuan ;
Liu, Xiaokang ;
Shen, Xinyi ;
Zhang, Wei ;
Liu, Wei ;
Qi, Zeming ;
Jiang, Zheng ;
Yang, Jinlong ;
Yao, Tao .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Recent Advances in Engineered Ru-Based Electrocatalysts for the Hydrogen/Oxygen Conversion Reactions [J].
Cao, Xianjun ;
Huo, Juanjuan ;
Li, Lu ;
Qu, Junpeng ;
Zhao, Yufei ;
Chen, Weihua ;
Liu, Chuntai ;
Liu, Hao ;
Wang, Guoxiu .
ADVANCED ENERGY MATERIALS, 2022, 12 (41)