Neutrosophic Semi βF-Contra Continuity in a Neutrosophic Topological Space

被引:0
|
作者
Rahman, K. Fayaz Ur [1 ]
Kalaivani, N. [1 ]
Shanmugasundar, G. [2 ]
Rajan, H. B. Michael [3 ]
Elangova, Muniyandy [4 ,5 ]
机构
[1] Vel Tech Rangarajan Dr Sagunthala R&D Inst Sci & T, Dept Math, Chennai, India
[2] Sri Sairam Inst Technol, Dept Mech Engn, Chennai, India
[3] Kings Coll Engn, Dept Mech Engn, Pudukkottai, India
[4] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Biosci, Chennai, India
[5] Bond Marine Consultancy, Dept R&D, London EC1V2NX, England
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 02期
关键词
neutrosophic topology; neutrosophic S-beta(F) closed set; neutrosophic S-beta(F)-continuity; neutrosophic S-beta(F)-contra continuity; neutrosophic strongly S-beta(F)-contra continuity and neutrosophic S-beta(F)-contra irresolute; SETS;
D O I
10.37256/cm.5220243802
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main intention of this article is to propose the theory of a neutrosophic S-beta(F) contra continuous function, neutrosophic strongly S-beta(F) continuous function, neutrosophic strongly S-beta(F) contra continuous function and neutrosophic S-beta(F) contra irresolute function in neutrosophic topological spaces. Further several properties based on the above concepts have been studied. Many theorems based on the above ideas have been proved with the suitable illustration. Further the relationship connecting neutrosophic S-beta(F) contra continuous function, neutrosophic strongly S-beta(F) continuous function, neutrosophic strongly S-beta(F) contra continuous function and neutrosophic S-beta(F) contra irresolute function are studied and illustrated. Moreover, various theorems based on compositions of functions have been proved. In addition to this, the product of two neutrosophic sets is defined and related theorems have been proved.
引用
收藏
页码:2165 / 2172
页数:8
相关论文
共 50 条
  • [1] On Continuity in Minimal Structure Neutrosophic Topological Space
    Pal G.
    Tripathy B.C.
    Dhar R.
    Neutrosophic Sets and Systems, 2022, 51 : 360 - 370
  • [2] Neutrosophic Soft Continuity in Neutrosophic Soft Topological Spaces
    Aras, Cigdem Gunduz
    Bayramov, Sadi
    FILOMAT, 2020, 34 (10) : 3495 - 3506
  • [3] On new classes of neutrosophic continuous and contra mappings in neutrosophic topological spaces
    Abbas, N. M. Ali
    Khalil, Shuker Mahmood
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (01): : 719 - 725
  • [4] Characterizations of neutrosophic (αγ, βne) and neutrosophic α(γ,β)- contra continuous functions in feutrosophic topological spaces
    Kalaivani, N.
    Visalakshidevi, E. Mona
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2024, 27 (05) : 1123 - 1132
  • [5] Neutrosophic Multiset Topological Space
    Das R.
    Tripathy B.C.
    Das, Rakhal (rakhaldas95@gmail.com); Tripathy, Binod Chandra (binodtripathy@tripurauniv.in), 1600, University of New Mexico (35): : 142 - 152
  • [6] Pentapartitioned Neutrosophic Topological Space
    Das, Suman
    Tripathy, Binod Chandra
    Neutrosophic Sets and Systems, 2021, 45 : 121 - 132
  • [7] On Neutrosophic Soft Topological Space
    Bera, Tuhin
    Mahapatra, Nirmal Kumar
    NEUTROSOPHIC SETS AND SYSTEMS, 2018, 19 : 3 - 15
  • [8] On G-Continuity in Neutrosophic Topological Spaces
    Acikgoz, A.
    Cakalli, H.
    Esenbel, F.
    Kocinac, Lj D. R.
    FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020), 2021, 2334
  • [9] Generalized neutrosophic b-open sets in neutrosophic topological space
    Das S.
    Pramanik S.
    Pramanik, Surapati (sura_pati@yahoo.co.in), 1600, University of New Mexico (35): : 522 - 530
  • [10] Neutrosophic Simply Soft Open Set in Neutrosophic Soft Topological Space
    Das S.
    Pramanik S.
    Neutrosophic Sets Syst., 2020, (235-243): : 235 - 243