High-entropy amorphous FeCoCrNi thin films with excellent electrocatalytic oxygen evolution reaction performance

被引:0
作者
Li, Yuchan [1 ]
Liu, Yixing [3 ]
Shen, Jinbo [3 ]
Lan, Aidong [1 ]
Jin, Xi [1 ]
Han, Lina [1 ]
Qiao, Junwei [1 ,2 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Lab High Entropy Alloys, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Key Lab Interface Sci & Engn Adv Mat, Minist Educ, Taiyuan 030024, Peoples R China
[3] Jinneng Holding Shanxi Inst Sci & Technol Co Ltd, Taiyuan 030000, Peoples R China
基金
中国国家自然科学基金;
关键词
High-entropy alloys; Electrodeposition; Amorphous thin; Oxygen evolution reaction; METAL-OXIDE; EFFICIENT ELECTROCATALYST; VALENCE STATE; COBALT OXIDE; FE; NI; ELECTRODE; CR;
D O I
10.1016/j.jallcom.2024.176089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-entropy amorphous FeCoCrNi thin-film catalysts with different Cr contents were prepared on the surface of copper substrate via electrodeposition. Their electrocatalytic performance for oxygen evolution reaction (OER) in alkaline solution was investigated. The catalyst with the optimal performance was obtained when the concentration of Cr3+ in the electrodeposition solution was 200 g/L. It achieved a current density of 10 mA cm- 2 with a low overpotential of merely 295 mV and demonstrated a Tafel slope of 69.52 mV dec- 1, indicating favorable reaction kinetics. Furthermore, this catalyst showed remarkable stability, maintaining its catalytic performance after 1000 cycles of cyclic voltammetry tests in the alkaline solution. The reasons for its excellent catalytic performance are as follows: (1) The uniform cracks and cellular structure on the film surface result in a larger active area; (2) The amorphous structure is more prone to surface reconstruction during the catalytic process, exposing more active sites; (3) Cr element regulates the valence states of Fe and Co ions as well as the existence forms of Ni and Co elements during the catalytic process, which accelerates the OER process and improves the catalytic performance.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] High-Entropy Sulfides as Highly Effective Catalysts for the Oxygen Evolution Reaction
    Lin, Ling
    Ding, Ziming
    Karkera, Guruprakash
    Diemant, Thomas
    Kante, Mohana V. V.
    Agrawal, Daisy
    Hahn, Horst
    Aghassi-Hagmann, Jasmin
    Fichtner, Maximilian
    Breitung, Ben
    Schweidler, Simon
    SMALL STRUCTURES, 2023,
  • [22] Exceptional Thermal Stability and Properties of Amorphous High-Entropy SiNbTaTiZr Thin Films
    Wei-Lin Hsu
    Chun-Yang Cheng
    Jien-Wei Yeh
    High Entropy Alloys & Materials, 2024, 2 (1): : 64 - 73
  • [23] Inert Mg Incorporation to Break the Activity/Stability Relationship in High-Entropy Layered Hydroxides for the Electrocatalytic Oxygen Evolution Reaction
    Liu, Da
    Yan, Xiaoxiao
    Guo, Peifang
    Yang, Yaxiong
    He, Yufei
    Liu, Jing
    Chen, Jian
    Pan, Hongge
    Wu, Renbing
    ACS CATALYSIS, 2023, 13 (11) : 7698 - 7706
  • [24] Defective high-entropy rocksalt oxide with enhanced metal-oxygen covalency for electrocatalytic oxygen evolution
    Liu, Fangming
    Yu, Meng
    Chen, Xiang
    Li, Jinhan
    Liu, Huanhuan
    Cheng, Fangyi
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (01) : 122 - 129
  • [25] Mechanical alloyed FeCoNiMoM (M=Cr, cu) high-entropy alloy powders as electrocatalysts for oxygen evolution reaction
    Wu, Caizhen
    Zhang, Xin
    Zhang, Yingjie
    Ma, Wensheng
    Zhao, Degang
    Ren, Bingbing
    Zhang, Zhonghua
    Wang, Yan
    JOURNAL OF MATERIOMICS, 2025, 11 (05)
  • [26] Defect-rich high-entropy oxide nanospheres anchored on high-entropy MOF nanosheets for oxygen evolution reaction
    Liu, Zhaoshun
    Xu, Junli
    Zhang, Fang
    Ji, Lu
    Shi, Zhongning
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (39) : 14622 - 14632
  • [27] High-Entropy Oxysulfide for High-Performance Oxygen Evolution Reactions Electrocatalyst
    Chatterjee, Arindam
    Ghosh, Anamika
    Ganguly, Dipsikha
    Sundara, Ramaprabhu
    Bhattacharya, Subramshu S.
    ENERGY TECHNOLOGY, 2023, 11 (11)
  • [28] Synthesis of High-Entropy Perovskite Hydroxides as Bifunctional Electrocatalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction
    Chae, Sangwoo
    Shio, Akihito
    Kishida, Tomoya
    Furutono, Kosuke
    Kojima, Yumi
    Panomsuwan, Gasidit
    Ishizaki, Takahiro
    MATERIALS, 2024, 17 (12)
  • [29] Sputter-Deposited High Entropy Alloy Thin Film Electrocatalyst for Enhanced Oxygen Evolution Reaction Performance
    Li, Siang-Yun
    Nguyen, Thi Xuyen
    Su, Yen-Hsun
    Lin, Chia-Chun
    Huang, Yan-Jia
    Shen, Yun-Hwei
    Liu, Chuan-Pu
    Ruan, Jr-Jeng
    Chang, Kao-Shuo
    Ting, Jyh-Ming
    SMALL, 2022, 18 (39)
  • [30] High-entropy BNbTaTiZr thin film with excellent thermal stability of amorphous structure and its electrical properties
    Cheng, Chun-Yang
    Yeh, Jien-Wei
    MATERIALS LETTERS, 2016, 185 : 456 - 459