Instance-based meta-learning for conditionally dependent univariate multi-step forecasting☆

被引:0
|
作者
Cerqueira, Vitor [1 ]
Torgo, Luis [1 ]
Bontempi, Gianluca [2 ]
机构
[1] Dalhousie Univ, Fac Comp Sci, 6050 Univ Ave, Halifax, NS B3H 1W5, Canada
[2] Univ Libre Bruxelles, Dept Informat, Machine Learning Grp, Brussels, Belgium
关键词
Time series; Multi-step forecasting; Meta-learning; Gradient Boosting; k-nearest neighbors; SERIES; PREDICTION; STRATEGIES; MODELS;
D O I
10.1016/j.ijforecast.2023.12.010
中图分类号
F [经济];
学科分类号
02 ;
摘要
Multi-step prediction is a key challenge in univariate forecasting. However, forecasting accuracy decreases as predictions are made further into the future. This is caused by the decreasing predictability and the error propagation along the horizon. In this paper, we propose a novel method called Forecasted Trajectory Neighbors (FTN) for multi-step forecasting with univariate time series. FTN is a meta-learning strategy that can be integrated with any state-of-the-art multi-step forecasting approach. It works by using training observations to correct the errors made during multiple predictions. This is accomplished by retrieving the nearest neighbors of the multi-step forecasts and averaging these for prediction. The motivation is to introduce, in a lightweight manner, a conditional dependent constraint across the forecasting horizons. Such a constraint, not always taken into account by most strategies, can be considered as a sort of regularization element. We carried out extensive experiments using 7795 time series from different application domains. We found that our method improves the performance of several state-of-the-art multi-step forecasting methods. An implementation of the proposed method is publicly available online, and the experiments are reproducible. Crown Copyright (c) 2024 Published by Elsevier B.V. on behalf of International Institute of Forecasters. All rights reserved.
引用
收藏
页码:1507 / 1520
页数:14
相关论文
共 50 条
  • [21] Multi-Step Forecasting for Lighting and Equipment Energy Consumption in Office Building Based on Deep Learning
    Zhou X.
    Lei S.
    Yan J.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (10): : 19 - 29
  • [22] Multi-step carbon price forecasting based on a new quadratic decomposition ensemble learning approach
    Zhang, Tingting
    Tang, Zhenpeng
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [23] Multi-step tap-water quality forecasting in South Korea with transformer-based deep learning model
    Cai, Danqi
    Chen, Kunwei
    Lin, Zhizhe
    Zhou, Jinglin
    Mo, Xinyue
    Zhou, Teng
    URBAN WATER JOURNAL, 2024, 21 (09) : 1109 - 1120
  • [24] 1D-CapsNet-LSTM: A deep learning-based model for multi-step stock index forecasting
    Zhang, Cheng
    Sjarif, Nilam Nur Amir
    Ibrahim, Roslina
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (02)
  • [25] Multi-step ahead meningitis case forecasting based on decomposition and multi-objective optimization methods
    Dal Molin Ribeiro, Matheus Henrique
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    JOURNAL OF BIOMEDICAL INFORMATICS, 2020, 111
  • [26] A novel multi-step forecasting strategy for enhancing deep learning models' performance
    Livieris, Ioannis E.
    Pintelas, Panagiotis
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (22) : 19453 - 19470
  • [27] Deep learning model on rates of change for multi-step ahead streamflow forecasting
    Tan, Woon Yang
    Lai, Sai Hin
    Pavitra, Kumar
    Teo, Fang Yenn
    El-Shafie, Ahmed
    JOURNAL OF HYDROINFORMATICS, 2023, 25 (05) : 1667 - 1689
  • [28] An Adaptive Approach for Probabilistic Wind Power Forecasting Based on Meta-Learning
    Meng, Zichao
    Guo, Ye
    Sun, Hongbin
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2024, 15 (03) : 1814 - 1833
  • [29] Distributed Learning Framework for Multi-timeframe Data Modelling in Financial Multi-step Forecasting
    Mehrizi, Ali
    Yazdi, Hadi Sadoghi
    EMERGING MARKETS FINANCE AND TRADE, 2025,
  • [30] A multi-energy meta-model strategy for multi-step ahead energy load forecasting
    Mystakidis, Aristeidis
    Ntozi, Evangelia
    Koukaras, Paraskevas
    Katsaros, Nikolaos
    Ioannidis, Dimosthenis
    Tjortjis, Christos
    Tzovaras, Dimitrios
    ELECTRICAL ENGINEERING, 2025,