Multistage strategy for ground point filtering on large-scale datasets

被引:0
|
作者
Paredes, Diego Teijeiro [1 ]
Lopez, Margarita Amor [1 ]
Bujan, Sandra [2 ]
Richter, Rico [3 ]
Doellner, Juergen [3 ]
机构
[1] Univ A Coruna, Fac Informat, Dept Ingn Comp, Comp Arquitecture Grp,CITIC,Lab 1 2, Campus Elvina s-n, La Coruna 15071, Spain
[2] Univ Leon, Dept Tecnol Minera Topog & Estruct, Leon, Spain
[3] Univ Potsdam, Hasso Plattner Inst, Fac Digital Engn, Potsdam, Germany
关键词
LiDAR point clouds; Landscape identification; Ground filtering; Apache spark; LIDAR DATA; CLASSIFICATION; CLOUD; SEGMENTATION; EXTRACTION; ALGORITHMS;
D O I
10.1007/s11227-024-06406-0
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Ground point filtering on national-level datasets is a challenge due to the presence of multiple types of landscapes. This limitation does not simply affect to individual users, but it is in particular relevant for those national institutions in charge of providing national-level Light Detection and Ranging (LiDAR) point clouds. Each type of landscape is typically better filtered by different filtering algorithms or parameters; therefore, in order to get the best quality classification, the LiDAR point cloud should be divided by the landscape before running the filtering algorithms. Despite the fact that the manual segmentation and identification of the landscapes can be very time intensive, only few studies have addressed this issue. In this work, we present a multistage approach to automate the identification of the type of landscape using several metrics extracted from the LiDAR point cloud, matching the best filtering algorithms in each type of landscape. An additional contribution is presented, a parallel implementation for distributed memory systems, using Apache Spark, that can achieve up to 34x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$34\times$$\end{document} of speedup using 12 compute nodes.
引用
收藏
页码:25974 / 26001
页数:28
相关论文
共 50 条
  • [1] Deep Ground Filtering of Large-Scale ALS Point Clouds via Iterative Sequential Ground Prediction
    Dai, Hengming
    Hu, Xiangyun
    Shu, Zhen
    Qin, Nannan
    Zhang, Jinming
    REMOTE SENSING, 2023, 15 (04)
  • [2] A multi-point focus transformer approach for large-scale ALS point cloud ground filtering
    Liu, Tongyang
    Wei, Bo
    Hao, Jiaojiao
    Li, Zexia
    Ye, Fuqiang
    Wang, Lili
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2025, : 979 - 999
  • [3] Towards intelligent ground filtering of large-scale topographic point clouds: A comprehensive survey
    Qin, Nannan
    Tan, Weikai
    Guan, Haiyan
    Wang, Lanying
    Ma, Lingfei
    Tao, Pengjie
    Fatholahi, Sarah
    Hu, Xiangyun
    Li, Jonathan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 125
  • [4] Large-scale urban point cloud labeling and reconstruction
    Zhang, Liqiang
    Li, Zhuqiang
    Li, Anjian
    Liu, Fangyu
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 138 : 86 - 100
  • [5] A fast classification strategy for SVM on the large-scale high-dimensional datasets
    Li, I-Jing
    Wu, Jiunn-Lin
    Yeh, Chih-Hung
    PATTERN ANALYSIS AND APPLICATIONS, 2018, 21 (04) : 1023 - 1038
  • [6] Parallel Framework for Dimensionality Reduction of Large-Scale Datasets
    Samudrala, Sai Kiranmayee
    Zola, Jaroslaw
    Aluru, Srinivas
    Ganapathysubramanian, Baskar
    SCIENTIFIC PROGRAMMING, 2015, 2015
  • [7] Workload-aware anonymization techniques for large-scale datasets
    LeFevre, Kristen
    DeWitt, David J.
    Ramakrishnan, Raghu
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2008, 33 (03):
  • [8] RailPC: A large-scale railway point cloud semantic segmentation dataset
    Jiang, Tengping
    Li, Shiwei
    Zhang, Qinyu
    Wang, Guangshuai
    Zhang, Zequn
    Zeng, Fankun
    An, Peng
    Jin, Xin
    Liu, Shan
    Wang, Yongjun
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (06) : 1548 - 1560
  • [9] Robust Locally Weighted Regression Techniques for Ground Surface Points Filtering in Mobile Laser Scanning Three Dimensional Point Cloud Data
    Nurunnabi, Abdul
    West, Geoff
    Belton, David
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (04): : 2181 - 2193
  • [10] Integrating large-scale neuroimaging research datasets: Harmonisation of white matter hyperintensity measurements across Whitehall and UK Biobank datasets
    Bordin, Valentina
    Bertani, Ilaria
    Mattioli, Irene
    Sundaresan, Vaanathi
    McCarthy, Paul
    Suri, Sana
    Zsoldos, Eniko
    Filippini, Nicola
    Mahmood, Abda
    Melazzini, Luca
    Lagana, Maria Marcella
    Zamboni, Giovanna
    Singh-Manoux, Archana
    Kivimaki, Mika
    Ebmeier, Klaus P.
    Baselli, Giuseppe
    Jenkinson, Mark
    Mackay, Clare E.
    Duff, Eugene P.
    Griffanti, Ludovica
    NEUROIMAGE, 2021, 237