A mixed proton-electron-conducting cathode with a Ru nanoparticle catalyst for electrochemical ammonia synthesis based on a proton-conducting BZCYYb electrolyte

被引:2
作者
Chen, Jiaqi [1 ,2 ]
Gao, Wenbo [2 ,3 ]
Zhu, Liangzhu [4 ]
Tao, Haoliang [4 ]
Feng, Sheng [2 ]
Cao, Hujun [2 ,3 ]
Guo, Jianping [2 ,3 ]
Chen, Yanxia [1 ]
Chen, Ping [2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Dept Chem Phys, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315200, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
NITROGEN REDUCTION; HIGH-EFFICIENCY; TEMPERATURE; HYDROGEN; CELL; ION;
D O I
10.1039/d4ta04520c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical ammonia synthesis (EAS) has emerged as a promising alternative to the traditional Haber-Bosch process. Indeed, N2 activation in room-temperature EAS systems remains a formidable challenge due to the strong N 00000000000000000 00000000000000000 00000000000000000 01111111111111110 00000000000000000 01111111111111110 00000000000000000 01111111111111110 00000000000000000 00000000000000000 00000000000000000 N bond. Solid oxide proton conductor EAS (PCEAS) electrolysis cells operating at intermediate temperatures offer a promising solution by utilizing both temperature and potential. In this process, the design of the cathode is crucial, requiring abundant proton and electron conduction channels, along with highly active catalysts. Herein, we design a cathode composed of ruthenium-La0.6Sr0.4Co0.2Fe0.8O3-delta-BaZr0.1Ce0.7Y0.1Yb0.1O3-delta (Ru-LSCF-BZCYYb) to meet the aforementioned requirements for PCEAS. LSCF and BZCYYb form a porous skeleton at the cathode, with Ru nanoparticles dispersed on the surface of this structure. This configuration features numerous triple-phase boundaries (TPBs), facilitating the contact between activated N2, H+, and e-, thereby promoting electrochemical ammonia synthesis. The impregnated Ru-LSCF-BZCYYb|BZCYYb|Ni-BZCYYb PCEAS electrolysis cell exhibited a maximum NH3 formation rate of 5.14 x 10-11 mol s-1 cm-2 and a maximum Faraday efficiency (FE) of 0.128% at 400 degrees C and -0.2 V with H2 and N2 as feedstock gases. Its yield surpassed those of the mixed Ru-LSCF-BZCYYb|BZCYYb|Ni-BZCYYb and the impregnated Ru-BZCYYb|BZCYYb|Ni-BZCYYb by a factor of 3.9 and 11.5, respectively. The authenticity of ammonia synthesis is confirmed using the 15N2 isotope combined with NMR detection. This study also achieved EAS using water as the hydrogen source. This approach would better meet the future demand for EAS by directly using N2 and H2O. Solid oxide proton conductor electrolysis cells, which operate at intermediate temperatures and utilize both heat and electrical potential, have emerged as a promising alternative to the traditional Haber-Bosch process.
引用
收藏
页码:26667 / 26677
页数:11
相关论文
共 72 条
  • [1] Factors governing oxygen reduction in solid oxide fuel cell cathodes
    Adler, SB
    [J]. CHEMICAL REVIEWS, 2004, 104 (10) : 4791 - 4843
  • [2] Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction
    Andersen, Suzanne Z.
    Statt, Michael J.
    Bukas, Vanessa J.
    Shapel, Sarah G.
    Pedersen, Jakob B.
    Krempl, Kevin
    Saccoccio, Mattia
    Chakraborty, Debasish
    Kibsgaard, Jakob
    Vesborg, Peter C. K.
    Norskov, Jens
    Chorkendorff, Ib
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) : 4291 - 4300
  • [3] A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
    Andersen, Suzanne Z.
    Colic, Viktor
    Yang, Sungeun
    Schwalbe, Jay A.
    Nielander, Adam C.
    McEnaney, Joshua M.
    Enemark-Rasmussen, Kasper
    Baker, Jon G.
    Singh, Aayush R.
    Rohr, Brian A.
    Statt, Michael J.
    Blair, Sarah J.
    Mezzavilla, Stefano
    Kibsgaard, Jakob
    Vesborg, Peter C. K.
    Cargnello, Matteo
    Bent, Stacey F.
    Jaramillo, Thomas F.
    Stephens, Ifan E. L.
    Norskov, Jens K.
    Chorkendorff, Ib
    [J]. NATURE, 2019, 570 (7762) : 504 - +
  • [4] Advanced anodes for high-temperature fuel cells
    Atkinson, A
    Barnett, S
    Gorte, RJ
    Irvine, JTS
    Mcevoy, AJ
    Mogensen, M
    Singhal, SC
    Vohs, J
    [J]. NATURE MATERIALS, 2004, 3 (01) : 17 - 27
  • [5] Emerging Materials and Methods toward Ammonia-Based Energy Storage and Conversion
    Chang, Fei
    Gao, Wenbo
    Guo, Jianping
    Chen, Ping
    [J]. ADVANCED MATERIALS, 2021, 33 (50)
  • [6] Advances in Electrocatalytic N2 Reduction-Strategies to Tackle the Selectivity Challenge
    Chen, Gao-Feng
    Ren, Shiyu
    Zhang, Lili
    Cheng, Hui
    Luo, Yaru
    Zhu, Kehan
    Ding, Liang-Xin
    Wang, Haihui
    [J]. SMALL METHODS, 2019, 3 (06)
  • [7] Beyond fossil fuel-driven nitrogen transformations
    Chen, Jingguang G.
    Crooks, Richard M.
    Seefeldt, Lance C.
    Bren, Kara L.
    Bullock, R. Morris
    Darensbourg, Marcetta Y.
    Holland, Patrick L.
    Hoffman, Brian
    Janik, Michael J.
    Jones, Anne K.
    Kanatzidis, Mercouri G.
    King, Paul
    Lancaster, Kyle M.
    Lymar, Sergei V.
    Pfromm, Peter
    Schneider, William F.
    Schrock, Richard R.
    [J]. SCIENCE, 2018, 360 (6391)
  • [8] Identification and elimination of false positives in electrochemical nitrogen reduction studies
    Choi, Jaecheol
    Suryanto, Bryan H. R.
    Wang, Dabin
    Du, Hoang-Long
    Hodgetts, Rebecca Y.
    Vallana, Federico M. Ferrero
    MacFarlane, Douglas R.
    Simonov, Alexandr N.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [9] Combustion synthesis of La0.7Sr0.3Co0.5Fe0.5O3 (LSCF) porous materials for application as cathode in IT-SOFC
    da Conceicao, Leandro
    Silva, Amanda M.
    Ribeiro, Nielson F. P.
    Souza, Mariana M. V. M.
    [J]. MATERIALS RESEARCH BULLETIN, 2011, 46 (02) : 308 - 314
  • [10] David W.I. F., 2020, Ammonia: zero-carbon fertilizer, fuel and energy store, Policy Briefing