Biofilm growth on laser-induced periodic surface structures (LIPSS) of AISI 316L stainless steel

被引:0
作者
Capella, Aline Goncalves [1 ]
da Silva, Melquesedeque Moura [1 ]
Simoes, Jose Guilherme Alvarenga Batista [2 ]
de Andrade, Vitor Martins [3 ]
Riva, Rudimar [1 ,2 ]
da Conceicao, Katia [3 ]
机构
[1] Univ Fed Sao Paulo, Lab Proc Mat Laser, Rua Talim 330, Sao Jose Dos Campos, SP, Brazil
[2] Inst Estudos Avancados, Dept Ciencia & Tecnol Aerosp, Trevo Cel Aviador Jose AAdo Amarante 1, Sao Jose Dos Campos, SP, Brazil
[3] Univ Fed Sao Paulo, Lab Bioquim Peptideos, Rua Talim 330, Sao Jose Dos Campos, SP, Brazil
来源
MATERIA-RIO DE JANEIRO | 2024年 / 29卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
LIPSS; AISI 316L SS; E. coli biofilm; C. albicans biofilm; Laser-textured surface; CANDIDA-ALBICANS; CORROSION-RESISTANCE; BACTERIAL ADHESION; TOPOGRAPHY; TEMPERATURE; IRRADIATION; SUBSTRATE; FEATURES; CELLS;
D O I
10.1590/1517-7076-RMAT-2024-0288
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The morphological characteristics of metallic surfaces play a crucial role in the adhesion, retention, and growth of bacteria and fungi. Laser-induced periodic surface structures (LIPSS) present potential to controlling biofilm formation on biocompatible metallic surfaces for biomedical and engineering applications. LIPSS have emerged as a promising technique for controlling biofilm formation on biocompatible metallic surfaces in various biomedical and engineering applications. This present work uniquely focuses on investigating the effects of LIPSS on AISI 316L stainless steel (AISI 316L SS) as a potential inhibitor against the adhesion of bacteria and fungi (E. E. coli and C. albicans, , respectively) on laser-textured surfaces. Microstructural characterization through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), roughness profiling, and X-ray diffraction (XRD) revealed morphologic alterations of the laser-treated surfaces, resulting in the formation of LIPSS with laser fluences of 2.1 J/cm2 2 and 2.8 J/cm2, 2 , line spacing approximately equivalent to the laser wavelength (532 nm), and average roughness values of 96 nm and 209 nm, respectively. The study found that LIPSS exhibited inhibitory effects against E. coli biofilm formation on laser-textured surfaces, with a noticeable enhancement in antimicrobial efficiency ranging from 30% to 43% compared to untreated surfaces. However, the antimicrobial effectiveness against C. albicans was notably lower, with marginal improvements observed under specific conditions. Thus, the results showed a complex interplay between surface morphology, microbial adhesion, and antimicrobial efficacy on laser-textured metallic surfaces. These findings underscore the dependence of the antimicrobial properties of laser-textured surfaces on the type of microorganism and laser processing parameters.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Mold-Based Application of Laser-Induced Periodic Surface Structures (LIPSS) on Biomaterials for Nanoscale Patterning
    Hendrikson, Wim
    Masman-Bakker, Wendy
    van Bochove, Bas
    Skolski, Johann
    Eichstadt, Justus
    Koopman, Bart
    van Blitterswijk, Clemens
    Grijpma, Dirk
    Romer, Gert-Willem
    Moroni, Lorenzo
    Rouwkema, Jeroen
    MACROMOLECULAR BIOSCIENCE, 2016, 16 (01) : 43 - 49
  • [32] Laser-Induced Periodic Surface Structures (LIPSS) on Heavily Boron-Doped Diamond for Electrode Applications
    Sartori, Andre F.
    Orlando, Stefano
    Bellucci, Alessandro
    Trucchi, Daniele M.
    Abrahami, Shoshan
    Boehme, Thijs
    Hantschel, Thomas
    Vandervorst, Wilfried
    Buijnsters, Josephus G.
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (49) : 43236 - 43251
  • [33] Surface treatment and corrosion behavior of 316L stainless steel fabricated by selective laser melting
    Lv, Shasha
    Tao, Huimin
    Hong, Yuanjian
    Zheng, Yuanyuan
    Zhou, Chengshuang
    Zheng, Jinyang
    Zhang, Lin
    MATERIALS RESEARCH EXPRESS, 2019, 6 (10):
  • [34] Thermal stability of a nanostructured layer on the surface of 316L stainless steel
    Chui, Pengfei
    Sun, Kangning
    JOURNAL OF MATERIALS RESEARCH, 2014, 29 (04) : 556 - 560
  • [35] SURFACE CONDITIONING OF CARDIOVASCULAR 316L STAINLESS STEEL STENTS: A REVIEW
    Navarro, Lucila
    Luna, Julio
    Rintoul, Ignacio
    SURFACE REVIEW AND LETTERS, 2017, 24 (01)
  • [36] Improvement of corrosion resistance of additive manufactured AISI 316L stainless steel in a physiological environment by TiN surface coating
    Yahyaoui, Houda
    Ben Moussa, Naoufel
    Habibi, Mohamed
    Ghanem, Farhat
    Ben Salah, Nizar
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 125 (5-6) : 2379 - 2391
  • [37] Improvement of corrosion resistance of additive manufactured AISI 316L stainless steel in a physiological environment by TiN surface coating
    Houda Yahyaoui
    Naoufel Ben Moussa
    Mohamed Habibi
    Farhat Ghanem
    Nizar Ben Salah
    The International Journal of Advanced Manufacturing Technology, 2023, 125 : 2379 - 2391
  • [38] In situ analysis of cryogenic strain of AISI 316L stainless steel using synchrotron radiation
    Crivoi, Maicon Rogerio
    Hoyos, John Jairo
    Izumi, Marcel Tadashi
    Marcolino de Aguiar, Denilson Jose
    Namur, Ricardo Sanson
    Terasawa, Ana Luisa
    Cintho, Osvaldo Mitsuyuki
    CRYOGENICS, 2020, 105
  • [39] Assessment of the effect of surface finishing processes on the pitting resistance in saline environments of welded AISI 316L stainless steel
    Masi, G.
    Chiavari, C.
    Martini, C.
    Pasini, F.
    Sessa, S.
    Gandolfi, N.
    Bignozzi, M. C.
    METALLURGIA ITALIANA, 2020, (09): : 7 - 17
  • [40] Influence of Ethanol, Acidity and Chloride Concentration on the Corrosion Resistance of AISI 316L Stainless Steel
    Ferreira, Elivelton A.
    Della Noce, Rodrigo
    Fugivara, Cecilio S.
    Benedetti, Assis V.
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2013, 24 (03) : 397 - 405