Markov Chains and Mappings of Distributions on Compact Spaces

被引:0
作者
Aldous, David J. [1 ]
Feng, Shi [2 ]
机构
[1] Univ Calif Berkeley, Dept Stat, 367 Evans Hall 3860, Berkeley, CA 94720 USA
[2] Cornell Univ, Dept Math, Ithaca, NY USA
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2024年 / 21卷
关键词
Coupling; Markov chain; compact metric space; dynamical system;
D O I
10.30757/ALEA.v21-53
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a compact metric space S and a pair (j,k) with k >= 2 and 1 <= j <= k. For any probability distribution theta is an element of P(S), define a Markov chain on S by: from state s, take k i.i.d. (theta) samples, and jump to the j'th closest. Such a chain converges in distribution to a unique stationary distribution, say pi(j,k)(theta). So this defines a mapping pi(j,k ): P(S)-> P(S). What happens when we iterate this mapping? In particular, what are the fixed points of this mapping? We present a few rigorous results, to complement our extensive simulation study elsewhere.
引用
收藏
页码:1407 / 1416
页数:10
相关论文
共 2 条
  • [1] Aldous DJ, 2024, Arxiv, DOI arXiv:2403.18153
  • [2] Levin D. A., 2009, MARKOV CHAINS MIXING