RIONIDA: A Novel Algorithm for Imbalanced Data Combining Instance-Based Learning and Rule Induction

被引:0
作者
Gora, Grzegorz [1 ]
Skowron, Andrzej [2 ]
机构
[1] Univ Warsaw, Stefana Banacha 2, PL-02097 Warsaw, Poland
[2] PAS, Syst Res Inst, Newelska 6, PL-01447 Warsaw, Poland
来源
ROUGH SETS, PT I, IJCRS 2024 | 2024年 / 14839卷
关键词
Imbalanced Learning; Classification; Supervised Learning; Instance-based Learning; k Nearest Neighbours; Rule Induction;
D O I
10.1007/978-3-031-65665-1_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The article presents the RIONIDA learning algorithm based on combination of two widely-used empirical approaches: rule induction and instance-based learning for imbalanced data classification. The algorithm is a substantial extension of the well-known RIONA algorithm developed for balanced data. RIONIDA is relatively fast and significantly outperforms the state-of-the-art algorithms analysed in the paper.
引用
收藏
页码:201 / 219
页数:19
相关论文
共 37 条
  • [11] Fernandez A., 2018, Learning from imbalanced data sets, V10, DOI [DOI 10.1007/978-3-319-98074-4, 10. 1007/978-3-319-98074-4]
  • [12] Frank E., 1998, Machine Learning. Proceedings of the Fifteenth International Conference (ICML'98), P144
  • [14] Furnkranz J., 1994, Machine learning proceedings 1994, P70
  • [15] Gora G., 2023, Annals of Computer Science and Information Systems, V31, P485
  • [16] Gora G., 2022, Ph.D. thesis
  • [17] On kNN Class Weights for Optimising G-Mean and F1-Score
    Gora, Grzegorz
    Skowron, Andrzej
    [J]. ROUGH SETS, IJCRS 2023, 2023, 14481 : 414 - 430
  • [18] Grama L, 2018, INT SYMP ELEC TELECO, P263
  • [19] Grama L, 2017, INT SYMP IMAGE SIG, P225, DOI 10.1109/ISPA.2017.8073600
  • [20] Grzymala-Busse JW, 2004, COG TECH, P543