Revisiting gradient conformal solitons

被引:0
|
作者
Cunha, Antonio W. [1 ]
de Lima, Eudes L. [2 ]
de Lima, Henrique F. [3 ]
Maeta, Shun [4 ]
机构
[1] Univ Fed Piaui, Dept Posgrad Matemat, BR-64049550 Teresina, Piaui, Brazil
[2] Univ Fed Campina Grande, Unidade Academ Ciencias Exatas & Nat, BR-58900000 Cajazeiras, Paraiba, Brazil
[3] Univ Fed Campina Grande, Dept Matemat, BR-58109970 Campina Grande, Paraiba, Brazil
[4] Chiba Univ, Fac Educ, Dept Math, 1-33 Yayoicho, Chiba, Chiba 2638522, Japan
基金
日本学术振兴会;
关键词
Gradient conformal soliton; characterization and triviality results; generalized maximum principle; RIEMANNIAN-MANIFOLDS; MAXIMUM PRINCIPLE; YAMABE;
D O I
10.1515/advgeom-2024-0011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we deal with complete and stochastically complete gradient conformal solitons, which correspond to natural extensions of gradient Yamabe solitons, gradient k-Yamabe solitons, almost gradient Yamabe solitons and h-almost gradient Yamabe solitons. Under mild hypotheses on the potential function, we obtain new characterization and triviality results via applications of suitable generalized maximum principles.
引用
收藏
页码:323 / 328
页数:6
相关论文
共 50 条
  • [1] Conformal geometry of complete quasi Yamabe gradient solitons
    da Silva Filho, Joao Francisco
    Fernandes, Larissa Braga
    ARCHIV DER MATHEMATIK, 2024, 123 (02) : 211 - 224
  • [2] Revisiting Gradient Bach Solitons via Maximum Principles
    Cunha, Antonio W.
    de Lima, Eudes L.
    de Lima, Henrique F.
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (01): : 207 - 212
  • [3] GRADIENT ESTIMATES FOR POSITIVE EIGENFUNCTIONS OF THE L -OPERATOR ON CONFORMAL SOLITONS AND THEIR APPLICATIONS
    Zhao, Guangwen
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024,
  • [4] ON THE STRUCTURE OF GRADIENT YAMABE SOLITONS
    Cao, Huai-Dong
    Sun, Xiaofeng
    Zhang, Yingying
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (04) : 767 - 774
  • [5] On noncompact quasi Yamabe gradient solitons
    Wang, Lin Feng
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (03) : 337 - 348
  • [6] Diameter estimation of gradient ?-Einstein solitons
    Shaikh, Absos Ali
    Mandal, Prosenjit
    Mondal, Chandan Kumar
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 177
  • [7] Splitting theorem of gradient ρ-Einstein solitons
    Shaikh, Absos Ali
    Mandal, Prosenjit
    Mondal, Chandan Kumar
    AFRIKA MATEMATIKA, 2025, 36 (02)
  • [8] Conformal solitons for the mean curvature flow in hyperbolic space
    Mari, L.
    de Oliveira, J. Rocha
    Savas-Halilaj, A.
    de Sena, R. Sodre
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2024, 65 (02)
  • [9] Mean Curvature Flow Solitons in the Presence of Conformal Vector Fields
    Luis J. Alías
    Jorge H. de Lira
    Marco Rigoli
    The Journal of Geometric Analysis, 2020, 30 : 1466 - 1529
  • [10] Conformal Ricci almost solitons with certain soliton vector fields
    Sarkar, Avijit
    Halder, Suparna
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,