Analyzing the influence of different speech data corpora and speech features on speech emotion recognition: A review

被引:1
|
作者
Rathi, Tarun [1 ]
Tripathy, Manoj [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Roorkee 247667, India
关键词
Speech emotion recognition; Speech emotional data corpus; Speech features; Mel-frequency cepstral coefficients; Deep neural network; Convolutional neural network; DEEP; MODEL; NETWORK; DATABASES; RECURRENT; CNN; REPRESENTATIONS; CLASSIFIERS; 1D;
D O I
10.1016/j.specom.2024.103102
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Emotion recognition from speech has become crucial in human-computer interaction and affective computing applications. This review paper examines the complex relationship between two critical factors: the selection of speech data corpora and the extraction of speech features regarding speech emotion classification accuracy. Through an extensive analysis of literature from 2014 to 2023, publicly available speech datasets are explored and categorized based on their diversity, scale, linguistic attributes, and emotional classifications. The importance of various speech features, from basic spectral features to sophisticated prosodic cues, and their influence on emotion recognition accuracy is analyzed.. In the context of speech data corpora, this review paper unveils trends and insights from comparative studies exploring the repercussions of dataset choice on recognition efficacy. Various datasets such as IEMOCAP, EMODB, and MSP-IMPROV are scrutinized in terms of their influence on classifying the accuracy of the speech emotion recognition (SER) system. At the same time, potential challenges associated with dataset limitations are also examined. Notable features like Mel-frequency cepstral coefficients, pitch, intensity, and prosodic patterns are evaluated for their contributions to emotion recognition. Advanced feature extraction methods, too, are explored for their potential to capture intricate emotional dynamics. Moreover, this review paper offers insights into the methodological aspects of emotion recognition, shedding light on the diverse machine learning and deep learning approaches employed. Through a holistic synthesis of research findings, this review paper observes connections between the choice of speech data corpus, selection of speech features, and resulting emotion recognition accuracy. As the field continues to evolve, avenues for future research are proposed, ranging from enhanced feature extraction techniques to the development of standardized benchmark datasets. In essence, this review serves as a compass guiding researchers and practitioners through the intricate landscape of speech emotion recognition, offering a nuanced understanding of the factors shaping its recognition accuracy of speech emotion.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Speech Databases, Speech Features, and Classifiers in Speech Emotion Recognition: A Review
    Dar, G. H. Mohmad
    Delhibabu, Radhakrishnan
    IEEE ACCESS, 2024, 12 : 151122 - 151152
  • [2] Speech Emotion Recognition Using Deep Learning Techniques: A Review
    Khalil, Ruhul Amin
    Jones, Edward
    Babar, Mohammad Inayatullah
    Jan, Tariqullah
    Zafar, Mohammad Haseeb
    Alhussain, Thamer
    IEEE ACCESS, 2019, 7 : 117327 - 117345
  • [3] A systematic literature review of speech emotion recognition approaches
    Singh, Youddha Beer
    Goel, Shivani
    NEUROCOMPUTING, 2022, 492 : 245 - 263
  • [4] Speech emotion recognition approaches: A systematic review
    Hashem, Ahlam
    Arif, Muhammad
    Alghamdi, Manal
    SPEECH COMMUNICATION, 2023, 154
  • [5] An ongoing review of speech emotion recognition
    de Lope, Javier
    Grana, Manuel
    NEUROCOMPUTING, 2023, 528 : 1 - 11
  • [6] Speech emotion recognition using machine learning - A systematic review
    Madanian, Samaneh
    Chen, Talen
    Adeleye, Olayinka
    Templeton, John Michael
    Poellabauer, Christian
    Parry, Dave
    Schneidere, Sandra L.
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2023, 20
  • [7] A Comprehensive Review of Speech Emotion Recognition Systems
    Wani, Taiba Majid
    Gunawan, Teddy Surya
    Qadri, Syed Asif Ahmad
    Kartiwi, Mira
    Ambikairajah, Eliathamby
    IEEE ACCESS, 2021, 9 : 47795 - 47814
  • [8] Review on speech emotion recognition
    Han, W.-J. (hanwenjing07@gmail.com), 1600, Chinese Academy of Sciences (25): : 37 - 50
  • [9] Databases, features and classifiers for speech emotion recognition: a review
    Swain, Monorama
    Routray, Aurobinda
    Kabisatpathy, P.
    INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2018, 21 (01) : 93 - 120
  • [10] CyTex: Transforming speech to textured images for speech emotion recognition
    Bakhshi, Ali
    Harimi, Ali
    Chalup, Stephan
    SPEECH COMMUNICATION, 2022, 139 : 62 - 75