Fault Detection of Power Grid Using Graph Convolutional Networks

被引:1
作者
Lei, Min [1 ]
Pan, Rongbo [1 ]
Han, Lei [1 ]
Shan, Peifa [1 ]
Zhao, Yaopeng [1 ]
Li, Yangyang [1 ]
机构
[1] China Southern Power Grid Guangdong Power Grid, Qingyuan Power Supply Bur, Qingyuan 511500, Peoples R China
来源
PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ARTIFICIAL INTELLIGENCE, PEAI 2024 | 2024年
关键词
Fault detection; Graph convolutional networks; Power grid; Deep learning;
D O I
10.1145/3674225.3674273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Power grids, the linchpin of modern electrical infrastructure, necessitate advanced monitoring systems to ensure operational stability and safety. This paper presents an in-depth investigation into the application of Graph Convolutional Networks (GCN) for fault detection within power grids. Utilizing authentic data collected over two years from a real-world power grid, the research benchmarks the performance of GCN against established algorithms: CNN, LSTM, and ANN. Preliminary findings highlight the unmatched accuracy of GCN, surpassing 91%, emphasizing their proficiency in processing graph-structured data. While CNN and LSTM showcase respectable results, their inherent design indicates certain limitations for grid fault detection. The overarching conclusion suggests a promising avenue for GCN in enhancing power grid monitoring, potentially revolutionizing the methods by which we maintain and secure critical electrical infrastructures.
引用
收藏
页码:256 / 260
页数:5
相关论文
共 50 条
[41]   Encrypted Traffic Classification Using Graph Convolutional Networks [J].
Mo, Shuang ;
Wang, Yifei ;
Xiao, Ding ;
Wu, Wenrui ;
Fan, Shaohua ;
Shi, Chuan .
ADVANCED DATA MINING AND APPLICATIONS, 2020, 12447 :207-219
[42]   Bangla News Classification using Graph Convolutional Networks [J].
Rahman, Md Mahbubur ;
Khan, Md Akib Zabed ;
Biswas, Al Amin .
2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
[43]   A novel bearing fault detection approach using a convolutional neural network [J].
Aydin, Tolga ;
Erdem, Ebru ;
Erkayman, Burak ;
Kocadagistan, Mustafa Engin ;
Teker, Tanju .
MATERIALS TESTING, 2024, 66 (04) :478-492
[44]   Copy-Move Forgery Detection Technique Using Graph Convolutional Networks Feature Extraction [J].
Shinde, Varun ;
Dhanawat, Vineet ;
Almogren, Ahmad ;
Biswas, Anjanava ;
Bilal, Muhammad ;
Naqvi, Rizwan Ali ;
Ur Rehman, Ateeq .
IEEE ACCESS, 2024, 12 :121675-121687
[45]   Cyberattack Detection in Large-Scale Smart Grids using Chebyshev Graph Convolutional Networks [J].
Boyaci, Osman ;
Narimani, M. Rasoul ;
Davis, Katherine ;
Serpedin, Erchin .
2022 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ICEEE 2022), 2022, :217-221
[46]   Graph Convolutional Networks for Road Networks [J].
Jepsen, Tobias Skovgaard ;
Jensen, Christian S. ;
Nielsen, Thomas Dyhre .
27TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2019), 2019, :460-463
[47]   Graph convolutional networks in language and vision: A survey [J].
Ren, Haotian ;
Lu, Wei ;
Xiao, Yun ;
Chang, Xiaojun ;
Wang, Xuanhong ;
Dong, Zhiqiang ;
Fang, Dingyi .
KNOWLEDGE-BASED SYSTEMS, 2022, 251
[48]   NON-RECURSIVE GRAPH CONVOLUTIONAL NETWORKS [J].
Chen, Hao ;
Deng, Zengde ;
Xu, Yue ;
Li, Zhoujun .
2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, :3205-3209
[49]   Efficient Fault Localization in Smart Grid Through Analysis of the Wave Matrix Image Using Convolutional Neural Networks [J].
Carlos Filho, Jose ;
Abreu, Francisco C. M. ;
Silva, Mauricio ;
Borges, Fabbio ;
Rabelo, Ricardo A. L. .
IEEE ACCESS, 2025, 13 :53407-53419
[50]   Semisupervised Change Detection Using Graph Convolutional Network [J].
Saha, Sudipan ;
Mou, Lichao ;
Zhu, Xiao Xiang ;
Bovolo, Francesca ;
Bruzzone, Lorenzo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (04) :607-611