Multiplicity and symmetry breaking for supercritical elliptic problems in exterior domains

被引:0
作者
Boscaggin, Alberto [1 ]
Colasuonno, Francesca [2 ]
Noris, Benedetta [3 ]
Weth, Tobias [4 ]
机构
[1] Univ Torino, Dipartimento Matemat, via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Bologna, Dipartimento Matemat, pzza Porta San Donato 5, I-40126 Bologna, Italy
[3] Politecn Milan, Dipartimento Matemat, pzza Leonardo Vinci 32, I-20133 Milan, Italy
[4] Goethe Univ Frankfurt, Inst Math, Robert Mayer Str 10, D-60629 Frankfurt, Germany
关键词
supercritical elliptic equations; variational methods; invariant cones; symmetric nonradial solutions; POSITIVE SOLUTIONS; NEUMANN PROBLEMS; EQUATIONS; EXISTENCE;
D O I
10.1088/1361-6544/ad74d0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the following semilinear equation in exterior domains -Delta u+u=a(x)|u|(p-2)u, u is an element of H-0(1)(A(R)), where A(R):={x is an element of R-N:|x|>R}, N >= 3, R > 0. Assuming that the weight a is positive and satisfies some symmetry and monotonicity properties, we exhibit a positive solution having the same features as a, for values of p > 2 in a suitable range that includes exponents greater than the standard Sobolev critical one. In the special case of radial weight a, our existence result ensures multiplicity of nonradial solutions. We also provide an existence result for supercritical p in nonradial exterior domains.
引用
收藏
页数:26
相关论文
共 26 条
  • [1] Increasing radial solutions for Neumann problems without growth restrictions
    Bonheure, Denis
    Noris, Benedetta
    Weth, Tobias
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (04): : 573 - 588
  • [2] A supercritical elliptic equation in the annulus
    Boscaggin, Alberto
    Colasuonno, Francesca
    Noris, Benedetta
    Weth, Tobias
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2023, 40 (01): : 157 - 183
  • [3] A priori bounds and multiplicity of positive solutions for p-Laplacian Neumann problems with sub-critical growth
    Boscaggin, Alberto
    Colasuonno, Francesca
    Noris, Benedetta
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (01) : 73 - 102
  • [4] MULTIPLE POSITIVE SOLUTIONS FOR A CLASS OF p-LAPLACIAN NEUMANN PROBLEMS WITHOUT GROWTH CONDITIONS
    Boscaggin, Alberto
    Colasuonno, Francesca
    Noris, Benedetta
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (04) : 1625 - 1644
  • [5] Brezis H, 2011, UNIVERSITEXT, P1
  • [6] POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS
    BREZIS, H
    NIRENBERG, L
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) : 437 - 477
  • [7] Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli
    Byeon, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 136 (01) : 136 - 165
  • [8] Existence of clustering high dimensional bump solutions of superlinear elliptic problems on expanding annuli
    Byeon, Jaeyoung
    Kim, Seunghyeok
    Pistoia, Angela
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (09) : 1955 - 1980
  • [9] Nonlinear elliptic equations on expanding symmetric domains
    Catrina, F
    Wang, ZQ
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (01) : 153 - 181
  • [10] A NON-LINEAR BOUNDARY-VALUE PROBLEM WITH MANY POSITIVE SOLUTIONS
    COFFMAN, CV
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 54 (03) : 429 - 437