Modeling catalyst effectiveness factor with space-fractional derivative using Haar wavelet collocation method

被引:0
作者
Zhokh, Oleksii [1 ]
机构
[1] Natl Acad Sci Ukraine, LV Pisarzhevskii Inst Phys Chem, Nauky Ave 31, UA-03028 Kyiv, Ukraine
关键词
effectiveness factor; space-fractional diffusion; haar wavelet collocation method; fractional derivative; ANOMALOUS DIFFUSION; TRANSPORT;
D O I
10.1515/ijcre-2024-0128
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Mass transfer limitations may considerably affect the rate of a heterogeneous catalytic process. The catalyst effectiveness factor is a quantitative measure of the impact of the diffusion process inside a catalyst particle. The effectiveness factor is derived from the solution of the steady-state reaction-diffusion problem. Herein, we simulate the steady-state reaction-diffusion equation with space-fractional derivative and linear reaction kinetics. The solution to the problem is obtained numerically using the Haar wavelet collocation method. The effect of the anomalous diffusion exponent on the catalyst effectiveness factor and process parameters, e.g. reactor volume and catalyst mass, is demonstrated. We anticipate that the process efficiency will be notably improved by changing the diffusion regime from standard to superdiffusive.
引用
收藏
页码:1101 / 1106
页数:6
相关论文
共 28 条
  • [1] A comprehensive review on fractional-order optimal control problem and its solution
    Abd-Elmonem, Assmaa
    Banerjee, Ramashis
    Ahmad, Shabir
    Jamshed, Wasim
    Nisar, Kottakkaran Sooppy
    Eid, Mohamed R.
    Ibrahim, Rabha W.
    El Din, Sayed M.
    [J]. OPEN MATHEMATICS, 2023, 21 (01):
  • [2] A high-order reliable and efficient Haar wavelet collocation method for nonlinear problems with two point-integral boundary conditions
    Ahsan, Muhammad
    Lei, Weidong
    Khan, Amir Ali
    Ullah, Aizaz
    Ahmad, Sheraz
    Ul Arifeen, Shams
    Uddin, Zaheer
    Qu, Haidong
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2023, 71 : 185 - 200
  • [3] Analytical Methods for Fractional Differential Equations: Time-Fractional Foam Drainage and Fisher's Equations
    Alzahrani, Abdulrahman B. M.
    Alhawael, Ghadah
    [J]. SYMMETRY-BASEL, 2023, 15 (10):
  • [4] [Anonymous], 2002, Chemical Reactor Analysis and Design Fundamentals
  • [5] Boundary conditions for fractional diffusion
    Baeumer, Boris
    Kovacs, Mihaly
    Meerschaert, Mark M.
    Sankaranarayanan, Harish
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 336 : 408 - 424
  • [6] Tempered stable Levy motion and transient super-diffusion
    Baeumer, Boris
    Meerschaert, Mark M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (10) : 2438 - 2448
  • [7] EFFECTIVENESS FACTORS FOR GENERAL REACTION RATE FORMS
    BISCHOFF, KB
    [J]. AICHE JOURNAL, 1965, 11 (02) : 351 - &
  • [8] Dynamic analysis of the anomalous diffusion in catalyst particles considering chemical reactions with non-linear kinetics
    Callejas-Quiroz, Fatima
    Hernandez-Aguirre, Alberto
    Morales-Cabrera, Miguel A.
    Hernandez-Martinez, Eliseo
    [J]. FUEL, 2019, 242 : 35 - 40
  • [9] LEVY FLIGHT SUPERDIFFUSION: AN INTRODUCTION
    Dubkov, A. A.
    Spagnolo, B.
    Uchaikin, V. V.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (09): : 2649 - 2672
  • [10] Non-Isothermal Effectiveness Factor for Catalytic Particles with Non-Fickian Diffusion
    Hernandez Aguirre, Alberto
    Morales Cabrera, Miguel A.
    Morales Zarate, Epifanio
    Rivera, Victor M.
    Puebla, Hector
    Hernandez Martinez, Eliseo
    [J]. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2017, 15 (05)