Residual emissions in long-term national climate strategies show limited climate ambition

被引:10
作者
Smith, Harry B. [1 ,2 ]
Vaughan, Naomi E. [1 ,2 ]
Forster, Johanna [2 ,3 ]
机构
[1] Univ East Anglia, Sch Environm Sci, Norwich NR4 7TJ, England
[2] Univ East Anglia, Tyndall Ctr Climate Change Res, Norwich NR4 7TJ, England
[3] Univ East Anglia, Sch Global Dev, Norwich NR4 7TJ, England
来源
ONE EARTH | 2024年 / 7卷 / 05期
关键词
CARBON-DIOXIDE REMOVAL; NET-ZERO; TECHNOLOGY; MITIGATION; DECARBONIZATION; INDUSTRY; OPTIONS;
D O I
10.1016/j.oneear.2024.04.009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Net-zero targets imply a need to compensate for residual emissions through the deployment of carbon dioxide removal methods. Yet the extent of residual emissions within national climate plans, alongside their distribution, is largely unexplored. Here, we analyze 71 long-term national climate strategies to understand how national governments engage with residual emissions. Screening 139 scenarios, we determined that only 26 of the 71 strategies quantify residual emissions. Residual emissions are on average 21% of peak emissions for Annex I countries, ranging from 5% to 52% (excluding land use). For non-Annex I countries, residual emissions are on average 34%. By sector, agriculture represents the largest contributor to total residual emissions (on average, 36% for Annex I countries and 35% for non-Annex I countries). High-residual-emission scenarios show how some countries may retain or expand their fossil fuel production and use, using more carbon dioxide removal or international offsets to achieve net zero.
引用
收藏
页码:867 / 884
页数:19
相关论文
共 106 条
[1]   Global climate policy and deep decarbonization of energy-intensive industries [J].
Ahman, Max ;
Nilsson, Lars J. ;
Johansson, Bengt .
CLIMATE POLICY, 2017, 17 (05) :634-649
[2]   Net Zero: Science, Origins, and Implications [J].
Allen, Myles R. ;
Friedlingstein, Pierre ;
Girardin, Cecile A. J. ;
Jenkins, Stuart ;
Malhi, Yadvinder ;
Mitchell-Larson, Eli ;
Peters, Glen P. ;
Rajamani, Lavanya .
ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES, 2022, 47 :849-887
[3]  
[Anonymous], 2022, Making Net -Zero Steel Possible
[4]  
[Anonymous], 2018, MISSION POSSIBLE REA
[5]  
[Anonymous], 2020, Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.50C Climate Goal
[6]   The use of scenarios in climate policy planning: an assessment of actors' experiences and lessons learned in Finland [J].
Aro, Kalle ;
Aakkula, Jyrki ;
Lauttamaki, Ville ;
Varho, Vilja ;
Martens, Pim ;
Rikkonen, Pasi .
CLIMATE POLICY, 2023, 23 (02) :199-211
[7]   The Oxymoron of Carbon Dioxide Removal: Escaping Carbon Lock-In and yet Perpetuating the Fossil Status Quo? [J].
Asayama, Shinichiro .
FRONTIERS IN CLIMATE, 2021, 3
[8]   A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement [J].
Bataille, Chris ;
Ahman, Max ;
Neuhoff, Karsten ;
Nilsson, Lars J. ;
Fischedick, Manfred ;
Lechtenboehmer, Stefan ;
Solano-Rodriquez, Baltazar ;
Denis-Ryan, Amandine ;
Stiebert, Seton ;
Waisman, Henri ;
Sartor, Oliver ;
Rahbar, Shahrzad .
JOURNAL OF CLEANER PRODUCTION, 2018, 187 :960-973
[9]   Physical and policy pathways to net-zero emissions industry [J].
Bataille, Christopher G. F. .
WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE, 2020, 11 (02)
[10]   Complexity challenges for transition policy: lessons from coastal shipping in Norway [J].
Bergek, Anna ;
Hansen, Teis ;
Hanson, Jens ;
Makitie, Tuukka ;
Steen, Markus .
ENVIRONMENTAL INNOVATION AND SOCIETAL TRANSITIONS, 2023, 46