Deep Learning for Pneumonia Detection in Chest X-ray Images: A Comprehensive Survey

被引:2
|
作者
Siddiqi, Raheel [1 ]
Javaid, Sameena [1 ]
机构
[1] Bahria Univ, Karachi Campus, Comp Sci Dept, Karachi 73500, Pakistan
关键词
pneumonia detection; chest X-ray; deep learning; convolutional neural network; COVID-19; CONVOLUTIONAL NEURAL-NETWORKS; COVID-19; DETECTION; CAPSULE NETWORK; MODEL; CLASSIFICATION; IDENTIFICATION; ARCHITECTURE; PREDICTION; ENSEMBLES; DISEASES;
D O I
10.3390/jimaging10080176
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
This paper addresses the significant problem of identifying the relevant background and contextual literature related to deep learning (DL) as an evolving technology in order to provide a comprehensive analysis of the application of DL to the specific problem of pneumonia detection via chest X-ray (CXR) imaging, which is the most common and cost-effective imaging technique available worldwide for pneumonia diagnosis. This paper in particular addresses the key period associated with COVID-19, 2020-2023, to explain, analyze, and systematically evaluate the limitations of approaches and determine their relative levels of effectiveness. The context in which DL is applied as both an aid to and an automated substitute for existing expert radiography professionals, who often have limited availability, is elaborated in detail. The rationale for the undertaken research is provided, along with a justification of the resources adopted and their relevance. This explanatory text and the subsequent analyses are intended to provide sufficient detail of the problem being addressed, existing solutions, and the limitations of these, ranging in detail from the specific to the more general. Indeed, our analysis and evaluation agree with the generally held view that the use of transformers, specifically, vision transformers (ViTs), is the most promising technique for obtaining further effective results in the area of pneumonia detection using CXR images. However, ViTs require extensive further research to address several limitations, specifically the following: biased CXR datasets, data and code availability, the ease with which a model can be explained, systematic methods of accurate model comparison, the notion of class imbalance in CXR datasets, and the possibility of adversarial attacks, the latter of which remains an area of fundamental research.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Interpretable Deep Learning for Pneumonia Detection Using Chest X-Ray Images
    Colin, Jovito
    Surantha, Nico
    INFORMATION, 2025, 16 (01)
  • [2] Chest X-ray Images for Lung Disease Detection Using Deep Learning Techniques: A Comprehensive Survey
    Al-qaness, Mohammed A. A.
    Zhu, Jie
    AL-Alimi, Dalal
    Dahou, Abdelghani
    Alsamhi, Saeed Hamood
    Abd Elaziz, Mohamed
    Ewees, Ahmed A.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (06) : 3267 - 3301
  • [3] Pneumonia detection in chest X-ray images using an ensemble of deep learning models
    Kundu, Rohit
    Das, Ritacheta
    Geem, Zong Woo
    Han, Gi-Tae
    Sarkar, Ram
    PLOS ONE, 2021, 16 (09):
  • [4] A Deep Transfer Learning Framework for Pneumonia Detection from Chest X-ray Images
    Islam, Kh Tohidul
    Wijewickrema, Sudanthi
    Collins, Aaron
    O'Leary, Stephen
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 286 - 293
  • [5] A comparison of deep learning models for pneumonia detection from chest x-ray images
    Kadiroglu, Zehra
    Deniz, Erkan
    Senyigit, Abdurrahman
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2024, 39 (02): : 729 - 740
  • [6] Detection of Pneumonia in chest X-ray images
    Parveen, N. Ravia Shabnam
    Sathik, M. Mohamed
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2011, 19 (04) : 423 - 428
  • [7] Pneumonia detection in chest X-ray images using compound scaled deep learning model
    Hashmi, Mohammad Farukh
    Katiyar, Satyarth
    Hashmi, Abdul Wahab
    Keskar, Avinash G.
    AUTOMATIKA, 2021, 62 (3-4) : 397 - 406
  • [8] ConvMixer deep learning model for detection of pneumonia disease using chest X-ray images
    Chaudhary, Ankit
    Saroj, Sushil Kumar
    HEALTH SERVICES AND OUTCOMES RESEARCH METHODOLOGY, 2024,
  • [9] A lightweight deep learning architecture for the automatic detection of pneumonia using chest X-ray images
    Trivedi, Megha
    Gupta, Abhishek
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (04) : 5515 - 5536
  • [10] Pneumonia Detection Using Deep Transfer Learning in Gender Specific Chest X-ray Images
    Sakib, Syed Nazmus
    Masud, Raihan
    Rubaiat, Sajratul Yakin
    Bepery, Chinmay
    Sarker, Manash
    Hasan, Md Kamrul
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND INFORMATION TECHNOLOGY 2021 (ICECIT 2021), 2021,