Constructing a Li-Zn - Zn lithiophilic layer by a scalable method of magnetron for a Li-B anode

被引:1
|
作者
Huang, X. Y. [1 ]
Zhou, H. P. [1 ,2 ]
Jiang, L. Y. [1 ]
Geng, T. X. [1 ]
Xu, Z. Q. [1 ,2 ]
Fang, Z. X. [2 ]
Zhang, S. [1 ]
Feng, T. T. [1 ,2 ]
Wu, M. Q. [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
关键词
Li metal anode; Megnetron sputtering; SEI; Li-Zn alloy; Plasma etching; UNIFORM LITHIUM DEPOSITION; METAL ANODE; RECHARGEABLE BATTERIES; ION; CHALLENGES; ENERGY; INTERPHASES;
D O I
10.1016/j.jpowsour.2024.235268
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal anodes offer high theoretical capacity and low redox potential but face challenges like dendritic growth, fragile solid electrolyte interface (SEI), "dead lithium" formation, and volume expansion. Composite anodes or artificial SEIs can address these issues, but often suffer from poor lithiophilicity and mass burdens. This study presents a Li-Zn-B alloy anode combining a Li-Zn lithiophilic layer with a bulk Li-B alloy. The Li-Zn lithiophilic layer, formed by magnetron sputtering of Zinc oxide (ZnO), improves surface lithiophilicity. Symmetrical cells with this alloy cycled stably for 1300 (1 mA cm(-2), 1 mAh cm(-2)) and 550 h (2 mA cm(-2), 2 mAh cm(-2)) with minimal overpotentials. The LiBZn||NCM811 full cell showed a specific discharge capacity of 130.8 mAh/g and stable Coulombic efficiency of 98.9 % after 300 cycles.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Laser generated plasma of Li, Zn and Li-Zn mixture
    Gogic, S
    Milosevic, S
    SPECTRAL LINE SHAPES, VOL 9 - 13TH ICSLS, 1997, (386): : 163 - 166
  • [2] Boosting Li-Metal Anode Performance with Lithiophilic Li-Zn Seeds in a 2D Reduced Graphene Oxide Scaffold
    Zhou, Xiaoze
    Wang, Shuaiqi
    Li, Yaru
    Yang, Yi
    Xiao, Xiao
    Chen, Gang
    ADVANCED ENERGY MATERIALS, 2024,
  • [3] Fast Li+ Transport of Li-Zn Alloy Protective Layer Enabling Excellent Electrochemical Performance of Li Metal Anode
    Deng, Jinxiang
    Wang, Ying
    Qu, Siji
    Liu, Yuchi
    Zou, Wei
    Zhou, Fu
    Zhou, Aijun
    Li, Jingze
    BATTERIES & SUPERCAPS, 2021, 4 (01) : 140 - 145
  • [4] Calorimetric study of the Li-Zn system
    Debski, A.
    Terlicka, S.
    Gasior, W.
    Goral, A.
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2016, 103 : 374 - 380
  • [5] Thermodynamic modeling of the Li-Zn system
    Liang, Yu
    Du, Zhenmin
    Guo, Cuiping
    Li, Changrong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 455 (1-2) : 236 - 242
  • [6] Li-Zn (Lithium-Zinc)
    Okamoto, H.
    JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2012, 33 (04) : 345 - 345
  • [7] LI-ZN FERRITES WITH NONMAGNETIC ADDITIVES
    REZLESCU, N
    REZLESCU, E
    CRAUS, ML
    PASNICU, C
    CRYSTAL RESEARCH AND TECHNOLOGY, 1995, 30 (01) : 33 - 41
  • [8] Li-Zn (Lithium-Zinc)
    H. Okamoto
    Journal of Phase Equilibria and Diffusion, 2012, 33 : 345 - 345
  • [9] Li-Zn ferrites with nonmagnetic additives
    Rezlescu, N.
    Rezlescu, E.
    Craus, M.L.
    Pasnicu, C.
    Crystal Research and Technology, 30 (01):
  • [10] SOME INVESTIGATIONS ON LI-ZN FERRITES
    VALEEV, KS
    DROZDOV, NG
    FRUMKIN, AL
    SOVIET PHYSICS-TECHNICAL PHYSICS, 1957, 2 (11): : 2341 - 2350