We construct small amplitude gravity-capillary water waves with small nonzero vorticity, in three spatial dimensions, bifurcating from uniform flows. The waves are symmetric, and periodic in both horizontal coordinates. The proof is inspired by Lortz' construction of magnetohydrostatic equilibria in reflection-symmetric toroidal domains [23]. It relies on a global representation of the vorticity as the cross product of two gradients, and on prescribing a functional relationship between the Bernoulli function and the orbital periods of the water particles. The presence of the free surface introduces significant new challenges. In particular, the resulting free boundary problem is not elliptic, and the involved maps incur a loss of regularity under Fr & eacute;chet differentiation. Nevertheless, we show that a version of the Crandall-Rabinowitz local bifurcation method still applies in this setting, by carefully tracking the loss of regularity. (c) 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).