Recent progresses of Optical Frequency Domain Reflectometry

被引:1
|
作者
Zhu Kunyao [1 ,2 ]
Jiang Yi [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Opt & Photon, Beijing 100081, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Photon Informat Technol, Beijing 100081, Peoples R China
关键词
optical frequency domain reflectometry; distributed optical fiber sensing; Rayleigh backscattering; frequency-domain analysis; SPATIAL-RESOLUTION; LONG-RANGE; TEMPERATURE-MEASUREMENT; FIBER LASER; OFDR; SENSOR; COMPENSATION; ENHANCEMENT; SUPPRESSION; MODULATION;
D O I
10.3788/LOP230768
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optical frequency domain reflectometer (OFDR) is a distributed optical fiber measurement technology. The scanning laser is injected into the optical fiber link, and the position and intensity of the reflection points on the optical fiber link are located by analyzing the Rayleigh backscattering scattering light in the frequency domain. Because of its high precision, high spatial resolution and other characteristics, it is widely used in aerospace, intelligent structure, material processing, optical network monitoring, biomedicine and other high precision measurement and manufacturing fields. In this paper, the basic principle of OFDR is described. The research progress of key technologies to improve OFDR performance is introduced. Finally, the application of OFDR in different fields and to the future development trend are summarized and prospected.
引用
收藏
页数:17
相关论文
共 69 条
  • [1] Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation
    Ahn, TJ
    Lee, JY
    Kim, DY
    [J]. APPLIED OPTICS, 2005, 44 (35) : 7630 - 7634
  • [2] Dynamic optical frequency domain reflectometry
    Arbel, Dror
    Eyal, Avishay
    [J]. OPTICS EXPRESS, 2014, 22 (08): : 8823 - 8830
  • [3] Badar Mudabbir, 2014, IEEE Photonics Technology Letters, V26, P858, DOI 10.1109/LPT.2014.2308426
  • [4] Spatial Resolution Improvement in OFDR Using Four Wave Mixing and DSB-SC Modulation
    Badar, Mudabbir
    Kobayashi, Hirokazu
    Iwashita, Katsushi
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (15) : 1680 - 1683
  • [5] Chromatic dispersion measurement with double sideband phase noise canceled OFDR
    Badar, Mudabbir
    Kobayashi, Hirokazu
    Iwashita, Katsushi
    [J]. OPTICS COMMUNICATIONS, 2015, 356 : 350 - 355
  • [6] Incoherent optical frequency domain reflectometry based on a Kerr phase-interrogator
    Baker, C.
    Lu, Y.
    Song, J.
    Bao, X.
    [J]. OPTICS EXPRESS, 2014, 22 (13): : 15370 - 15375
  • [7] Characterization of the chirp in semiconductor laser under modulation
    Boukari, O.
    Hassine, L.
    Latry, O.
    Ketata, M.
    Bouchriha, H.
    [J]. MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2008, 28 (5-6): : 671 - 675
  • [8] Study of dynamic chirp in direct modulated DFB laser for C-OFDR application
    Boukari, O.
    Hassine, L.
    Bouchriha, H.
    Ketata, M.
    [J]. OPTICS COMMUNICATIONS, 2010, 283 (10) : 2214 - 2223
  • [9] Numerical Analysis and Recursive Compensation of Position Deviation for a Sub-Millimeter Resolution OFDR
    Cheng, Yueying
    Luo, Mingming
    Liu, Jianfei
    Luan, Nannan
    [J]. SENSORS, 2020, 20 (19) : 1 - 9
  • [10] High Spatial Resolution TGD-OFDR Based on Internally Modulated DFB Laser
    Dai Jianping
    Qiu Jinbo
    Liu Hongrui
    Luo Yimin
    Liu Qingwen
    [J]. ACTA OPTICA SINICA, 2023, 43 (07)