Exceptional fatigue-resistant austenitic stainless steel for cryogenic applications

被引:3
作者
Singh, Chetan [1 ]
Lee, Taeho [1 ]
Lee, Keun Hyung [1 ]
Kim, You Sub [1 ]
Huang, E. -Wen [2 ]
Jain, Jayant [3 ]
Liaw, Peter K. [4 ]
Lee, Soo Yeol [1 ]
机构
[1] Chungnam Natl Univ, Dept Mat Sci & Engn, Daejeon 34134, South Korea
[2] Natl Yang Ming Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan
[3] Indian Inst Technol, Dept Mat Sci & Engn, New Delhi 110016, India
[4] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
Ultra-low temperature; High cycle fatigue; Phase transformation; Cryogenic mechanical behavior; Austenitic stainless steel; INDUCED MARTENSITIC-TRANSFORMATION; GRAIN-SIZE; TEMPERATURE-DEPENDENCE; CRACK PROPAGATION; BEHAVIORS; ALLOY;
D O I
10.1016/j.apmt.2024.102195
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most alloys change from ductile to brittle at cryogenic temperatures, whereas high-entropy alloys show better strength, ductility, and toughness. However, they suffer from cost and mass-production challenges. We discerned the fatigue behaviour of a cost-effective austenitic stainless steel, SS316L, at an ultra-low temperature (ULT) of 15 K. For the cryogenic applications, our work demonstrates that compared to room-temperature (RT), ULT exhibits eight times higher fatigue life, despite even higher applied stress [6max 6 max = 1.3 x 6 ys RT / ULT (280 MPaRT; RT ; 517 MPa15 15 K )]. At 15 K, the fatigue mechanisms involve stacking faults, a two-step martensitic phase transformation ( y -> c -> alpha ' ) and alpha '-martensite twinning, utilizing the applied fatigue strain efficiently. The remarkable improvement in the mechanical strength and fatigue life at ULT is the key to revolutionizing sustainable advancements in space exploration and energy storage.
引用
收藏
页数:7
相关论文
共 47 条
  • [1] Alves JM, 2021, MATER RES-IBERO-AM J, V24, DOI [10.1590/1980-5373-mr-2021-0156, 10.1590/1980-5373-MR-2021-0156]
  • [2] [Anonymous], 2023, Standard Specifications for Construction and Materials
  • [3] [Anonymous], 2022, STANDARD SPECIFICATI
  • [4] On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium
    Burgers, WG
    [J]. PHYSICA, 1934, 1 : 561 - 586
  • [5] Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels
    Byun, TS
    Hashimoto, N
    Farrell, K
    [J]. ACTA MATERIALIA, 2004, 52 (13) : 3889 - 3899
  • [6] Cryogenic-Mechanical Properties and Applications of Multiple-Basis-Element Alloys
    Cui, Kaixuan
    Liaw, Peter K.
    Zhang, Yong
    [J]. METALS, 2022, 12 (12)
  • [7] Investigations on the evaluation of the residual fatigue life-time in austenitic stainless steels
    De Backer, F
    Schoss, V
    Maussner, G
    [J]. NUCLEAR ENGINEERING AND DESIGN, 2001, 206 (2-3) : 201 - 219
  • [8] Constitutive modelling and identification of parameters of the plastic strain-induced martensitic transformation in 316L stainless steel at cryogenic temperatures
    Garion, C
    Skoczen, B
    Sgobba, S
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2006, 22 (07) : 1234 - 1264
  • [9] Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures
    Gludovatz, Bernd
    Hohenwarter, Anton
    Thurston, Keli V. S.
    Bei, Hongbin
    Wu, Zhenggang
    George, Easo P.
    Ritchie, Robert O.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [10] Deformation behavior of austenitic stainless steel at deep cryogenic temperatures
    Han, Wentuo
    Liu, Yuchen
    Wan, Farong
    Liu, Pingping
    Yi, Xiaoou
    Zhan, Qian
    Morrall, Daniel
    Ohnuki, Somei
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2018, 504 : 29 - 32