Numerical performance analysis of In0.2Ga0.8N/p-Si based solar cell using PC1D simulation on influence of region thicknesses, doping concentration and temperature towards power conversion efficiency (PCE)

被引:2
作者
Khairuddin, Nur Syahirah [1 ]
Yusoff, Mohd Zaki Mohd [1 ,2 ]
Hussin, Hanim [3 ]
机构
[1] Univ Teknol MARA, Fac Appl Sci, Sch Phys & Mat Studies, Shah Alam 40450, Selangor, Malaysia
[2] Univ Teknol MARA UiTM, Inst Sci IOS, Ctr Funct Mat & Nanotechnol CFMN, NANOsciTech Lab NST, Shah Alam 40450, Selangor, Malaysia
[3] Univ Teknol MARA, Coll Engn, Sch Elect Engn, Shah Alam 40450, Selangor, Malaysia
来源
JOURNAL OF OPTICS-INDIA | 2024年
关键词
InGaN; Si; Photovoltaic solar cells; Temperature; Quantum efficiency; PC1D;
D O I
10.1007/s12596-024-02119-y
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this study, the indium gallium nitride (InGaN) with silicon (Si) p-n junction solar cells were optimized to achieve the highest conversion efficiency using PC1D numerical analysis software. Physical models such as Auger recombination with Fermi-Dirac statistics, Shockley-Read-Hall recombination, and the bandgap narrowing effect were used to simulate and analyses the device. The paper focuses on optimizing technological and geometrical aspects such as layer thickness, doping concentration, and temperature to investigate their impact on the structure's conversion efficiency. A short circuit current density (J(sc)) of 34.9 mA/cm(2), an open circuit voltage (V-oc) of 0.7242 V, maximum power output (P-max) of 0.2137 W, fill factor of 84.55% are obtained under AM1.5G spectrum, exhibiting a maximum power conversion efficiency of 21.37% with low indium composition (x = 0.2). Additional parameters such as the current-voltage (I-V) characteristic, power-voltage (P-V) characteristic, and external quantum efficiency (EQE) are computed and plotted to achieve the optimal solar cell design.
引用
收藏
页数:12
相关论文
共 23 条
[1]   Utilization of open-source software in teaching the physics of P-N diodes [J].
Alnassar, Mohammad Saleh N. .
COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 2023, 31 (04) :867-883
[2]  
Das A., 2023, 2023 INT C EL COMP C, P1
[3]   Performance Analysis of Silicon Technologies Photovoltaic Cells Using Artificial Light Source in Different Spectra [J].
de Carvalho Neto, Joao T. .
IEEE SENSORS JOURNAL, 2023, 23 (09) :9972-9980
[4]   Design and fabrication process flow for high-efficiency and flexible InGaN solar cells [J].
Gujrati, Rajat ;
Karrakchou, Soufiane ;
Oliverio, Lucas ;
Sundaram, Suresh ;
Voss, Paul L. ;
Monroy, Eva ;
Salvestrini, Jean Paul ;
Ougazzaden, Abdallah .
MICRO AND NANOSTRUCTURES, 2023, 176
[5]   Comparative analysis between numerical simulation of PPV/PCBM and InGaN based solar cells [J].
Iqbal, Mohammad Asif ;
Gupta, Sunil Kumar .
MATERIALS TODAY-PROCEEDINGS, 2020, 30 :168-173
[6]   The effects of thickness and doping concentration on the solar efficiency of GaN/p-Si based solar cells [J].
Khairuddin, N. S. ;
Yusoff, M. Z. Mohd ;
Hussin, H. .
CHALCOGENIDE LETTERS, 2023, 20 (09) :629-637
[7]  
Khairuddin NS., 2023, Int. J. Electroactive Mater, V11, P21
[8]   High conversion and quantum efficiency indium-rich p-InGaN/p-InGaN/n-InGaN solar cell [J].
Manzoor, H. U. ;
Zawawi, M. A. Md ;
Pakhuruddin, M. Z. ;
Ng, S. S. ;
Hassan, Z. .
PHYSICA B-CONDENSED MATTER, 2021, 622
[9]   Theoretical design and performance of InxGa1-xN single junction solar cell [J].
Marouf, Y. ;
Dehimi, L. ;
Bouzid, F. ;
Pezzimenti, F. ;
Della Corte, F. G. .
OPTIK, 2018, 163 :22-32
[10]   Investigating the influence of absorber layer thickness on the performance of perovskite solar cells: A combined simulation and impedance spectroscopy study [J].
Mortadi A. ;
El Hafidi E. ;
Monkade M. ;
El Moznine R. .
Materials Science for Energy Technologies, 2024, 7 :158-165