Uncovering obscured phonon dynamics from powder inelastic neutron scattering using machine learning

被引:0
作者
Su, Yaokun [1 ]
Li, Chen [1 ,2 ]
机构
[1] Univ Calif Riverside, Mat Sci & Engn, Riverside, CA 92507 USA
[2] Univ Calif Riverside, Mech Engn, Riverside, CA 92507 USA
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2024年 / 5卷 / 03期
关键词
phonon dynamics; inelastic neutron scattering; variational autoencoder; domain adaptation; VIBRATIONS;
D O I
10.1088/2632-2153/ad79b6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The study of phonon dynamics is pivotal for understanding material properties, yet it faces challenges due to the irreversible information loss inherent in powder inelastic neutron scattering spectra and the limitations of traditional analysis methods. In this study, we present a machine learning framework designed to reveal obscured phonon dynamics from powder spectra. Using a variational autoencoder, we obtain a disentangled latent representation of spectra and successfully extract force constants for reconstructing phonon dispersions. Notably, our model demonstrates effective applicability to experimental data even when trained exclusively on physics-based simulations. The fine-tuning with experimental spectra further mitigates issues arising from domain shift. Analysis of latent space underscores the model's versatility and generalizability, affirming its suitability for complex system applications. Furthermore, our framework's two-stage design is promising for developing a universal pre-trained feature extractor. This approach has the potential to revolutionize neutron measurements of phonon dynamics, offering researchers a potent tool to decipher intricate spectra and gain valuable insights into the intrinsic physics of materials.
引用
收藏
页数:10
相关论文
共 38 条
  • [1] Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source
    Abernathy, D. L.
    Stone, M. B.
    Loguillo, M. J.
    Lucas, M. S.
    Delaire, O.
    Tang, X.
    Lin, J. Y. Y.
    Fultz, B.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (01)
  • [2] Elucidating proximity magnetism through polarized neutron reflectometry and machine learning
    Andrejevic, Nina
    Chen, Zhantao
    Thanh Nguyen
    Fan, Leon
    Heiberger, Henry
    Zhou, Ling-Jie
    Zhao, Yi-Fan
    Chang, Cui-Zu
    Grutter, Alexander
    Li, Mingda
    [J]. APPLIED PHYSICS REVIEWS, 2022, 9 (01)
  • [3] Machine learning for analysis of experimental scattering and spectroscopy data in materials chemistry
    Anker, Andy S.
    Butler, Keith T.
    Selvan, Raghavendra
    Jensen, Kirsten M. O.
    [J]. CHEMICAL SCIENCE, 2023, 14 (48) : 14003 - 14019
  • [4] Using generative adversarial networks to match experimental and simulated inelastic neutron scattering data
    Anker, Andy S.
    Butler, Keith T.
    Le, Manh Duc
    Perring, Toby G.
    Thiyagalingam, Jeyan
    [J]. DIGITAL DISCOVERY, 2023, 2 (03): : 578 - 590
  • [5] Mantid-Data analysis and visualization package for neutron scattering and μ SR experiments
    Arnold, O.
    Bilheux, J. C.
    Borreguero, J. M.
    Buts, A.
    Campbell, S. I.
    Chapon, L.
    Doucet, M.
    Draper, N.
    Leal, R. Ferraz
    Gigg, M. A.
    Lynch, V. E.
    Markvardsen, A.
    Mikkelson, D. J.
    Mikkelson, R. L.
    Miller, R.
    Palmen, K.
    Parker, P.
    Passos, G.
    Perring, T. G.
    Peterson, P. F.
    Ren, S.
    Reuter, M. A.
    Savici, A. T.
    Taylor, J. W.
    Taylor, R. J.
    Tolchenoy, R.
    Zhou, W.
    Zikoysky, J.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 764 : 156 - 166
  • [6] Interpretable, calibrated neural networks for analysis and understanding of inelastic neutron scattering data
    Butler, Keith T.
    Le, Manh Duc
    Thiyagalingam, Jeyan
    Perring, Toby G.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (19)
  • [7] Machine learning on neutron and x-ray scattering and spectroscopies
    Chen, Zhantao
    Andrejevic, Nina
    Drucker, Nathan C.
    Nguyen, Thanh
    Xian, R. Patrick
    Smidt, Tess
    Wang, Yao
    Ernstorfer, Ralph
    Tennant, D. Alan
    Chan, Maria
    Li, Mingda
    [J]. CHEMICAL PHYSICS REVIEWS, 2021, 2 (03):
  • [8] Simulation of Inelastic Neutron Scattering Spectra Using OCLIMAX
    Cheng, Y. Q.
    Daemen, L. L.
    Kolesnikov, A. I.
    Ramirez-Cuesta, A. J.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (03) : 1974 - 1982
  • [9] Capturing dynamical correlations using implicit neural representations
    Chitturi, Sathya R.
    Ji, Zhurun
    Petsch, Alexander N.
    Peng, Cheng
    Chen, Zhantao
    Plumley, Rajan
    Dunne, Mike
    Mardanya, Sougata
    Chowdhury, Sugata
    Chen, Hongwei
    Bansil, Arun
    Feiguin, Adrian
    Kolesnikov, Alexander I.
    Prabhakaran, Dharmalingam
    Hayden, Stephen M.
    Ratner, Daniel
    Jia, Chunjing
    Nashed, Youssef
    Turner, Joshua J.
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [10] Automated prediction of lattice parameters from X-ray powder diffraction patterns
    Chitturi, Sathya R.
    Ratner, Daniel
    Walroth, Richard C.
    Thampy, Vivek
    Reed, Evan J.
    Dunne, Mike
    Tassone, Christopher J.
    Stone, Kevin H.
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2021, 54 (54): : 1799 - 1810