Negative and persistent photoconductivity in Bi-doped Pb0.5Sn0.5Te epitaxial films

被引:0
作者
Pires, A. S. [1 ]
do Prado, W. P. [1 ]
Kawata, B. A. [2 ]
Vargas, L. M. B. [1 ]
da Silva, M. J. [1 ]
Rappl, P. H. O. [2 ]
Abramof, E. [2 ]
de Castro, S. [1 ]
Peres, M. L. [1 ]
机构
[1] Univ Fed Itajuba, Inst Fis & Quim, BR-37500903 Itajuba, MG, Brazil
[2] Inst Nacl Pesquisas Espaciais, Grp Pesquisa & Desenvolvimento Mat & Plasma, BR-12227010 Sao Jose Dos Campos, SP, Brazil
关键词
Lead tin telluride; Photoconductivity; Electrical transport; Bismuth doping; DEFECTS; GROWTH; LAYERS;
D O I
10.1016/j.optmat.2024.116113
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work presents the investigation of the photoconductivity effect in undoped and doped Pb0.5Sn0.5Te epitaxial films, with bismuth (Bi) atoms, at temperatures of 80 and 300 K. The results indicate that the samples show negative photoconductivity effect (NPC) and persistent photoconductivity (PPC). A detailed study was performed on Pb0.5Sn0.5Te sample doped with 0.15 % Bi, which presented higher photoconductivity amplitude than the other samples, by performing Hall effect and photoconductivity measurements in the temperature range of 80-300 K under dark and illuminated conditions. Using Arrhenius model, trap activation energy was extracted and compared with energies found in literature. From the Hall measurement we found that the NPC effect observed is due to a decrease in the mobility when the sample is illuminated while the carrier concentrations are nearly unaltered. It was also found that Pb0.5Sn0.5Te:Bi presented photoconductivity response for a wide range of wavelengths, indicating that it is potentially interesting for application in optic sensor devices.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Simultaneous positive and negative photocurrent response in asymmetric quantum dot infrared photodetectors [J].
Alvarenga, D. ;
Parra-Murillo, C. A. ;
Penello, G. M. ;
Kawabata, R. ;
Rodrigues, W. N. ;
Miquita, D. R. ;
Schmidt, W. ;
Guimaraes, P. S. S. ;
Pires, M. P. ;
Unterrainer, K. ;
Souza, P. L. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (04)
[2]   Photoconductivity in self-assembled CuO thin films [J].
Anand, Akhil M. ;
Raj, Aruna ;
Salam, Jishad A. ;
Nath, R. Adithya ;
Jayakrishnan, R. .
MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 2024, 13 (01) :45-58
[3]  
Babayeva R. F., 2023, UNEC J ENG APPL SCI, V3, P5, DOI DOI 10.61640/UJEAS.2023.0501
[4]  
Ber K. W., 2023, Semiconductor Physics, P1299
[5]   APPLICABILITY OF VEGARDS LAW TO PBXSN1-XTE ALLOY SYSTEM [J].
BIS, RF ;
DIXON, JR .
JOURNAL OF APPLIED PHYSICS, 1969, 40 (04) :1918-&
[6]   Charge-Carrier Dynamics, Mobilities, and Diffusion Lengths of 2D-3D Hybrid Butylammonium-Cesium-Formamidinium Lead Halide Perovskites [J].
Buizza, Leonardo R., V ;
Crothers, Timothy W. ;
Wang, Zhiping ;
Patel, Jay B. ;
Milot, Rebecca L. ;
Snaith, Henry J. ;
Johnston, Michael B. ;
Herz, Laura M. .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (35)
[7]   NEGATIVE PHOTOCONDUCTIVITY IN SEMICONDUCTOR HETEROSTRUCTURES [J].
CHAVES, AS ;
CHACHAM, H .
APPLIED PHYSICS LETTERS, 1995, 66 (06) :727-729
[8]   Redistribution of native defects and photoconductivity in ZnO under pressure [J].
Das, Partha Pratim ;
Samanta, Sudeshna ;
Wang, Lin ;
Kim, Jaeyong ;
Vogt, Thomas ;
Devi, P. Sujatha ;
Lee, Yongjae .
RSC ADVANCES, 2019, 9 (08) :4303-4313
[9]   Room temperature persistent photoconductivity in p-PbTe and p-PbTe: BaF2 [J].
de Castro, S. ;
Soares, D. A. W. ;
Peres, M. L. ;
Rappl, P. H. O. ;
Abramof, E. .
APPLIED PHYSICS LETTERS, 2014, 105 (16)
[10]  
Dey M, 2019, INT CONF ADV ELECTR, P613, DOI [10.1109/icaee48663.2019.8975498, 10.1109/ICAEE48663.2019.8975498]