The average number of integral points on the congruent number curves

被引:0
作者
Chan, Stephanie [1 ,2 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
关键词
Elliptic curve; Quadratic twist; Integral point; SELMER GROUPS; THEOREM; SIZE;
D O I
10.1016/j.aim.2024.109946
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the total number of non-torsion integral points on the elliptic curves epsilon(D): y(2) = x(3) -D(2)x, where D ranges over positive squarefree integers less than N , is O ( N (log N ) (- 1/4 +E )). The proof involves a discriminant-lowering procedure on integral binary quartic forms and an application of HeathBrown's method on estimating the average size of the 2-Selmer groups of the curves in this family. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:31
相关论文
共 50 条
[21]   ON A NONCRITICAL SYMMETRIC SQUARE L-VALUE OF THE CONGRUENT NUMBER ELLIPTIC CURVES [J].
Samart, Detchat .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (01) :13-22
[22]   ON HIGH RANK π/3 AND 2π/3-CONGRUENT NUMBER ELLIPTIC CURVES [J].
Janfada, A. S. ;
Salami, S. ;
Dujella, A. ;
Peral, J. C. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (06) :1867-1880
[23]   ON THE AVERAGE NUMBER OF 2-SELMER ELEMENTS OF ELLIPTIC CURVES OVER Fq(X) WITH Two MARKED POINTS [J].
Thorne, Jack A. .
DOCUMENTA MATHEMATICA, 2019, 24 :1179-1223
[24]   A VARIANT OF THE CONGRUENT NUMBER PROBLEM [J].
Dimabayao, Jerome T. ;
Purkait, Soma .
KYUSHU JOURNAL OF MATHEMATICS, 2024, 78 (02) :413-432
[25]   THE NUMBER OF POINTS ON ELLIPTIC CURVES y2 = x(3) [J].
Jeon, Wonju ;
Kim, Daeyeoul .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (03) :433-447
[26]   Torsion points on elliptic curves over number fields of small degree [J].
Derickx, Maarten ;
Kamienny, Sheldon ;
Stein, William ;
Stoll, Michael .
ALGEBRA & NUMBER THEORY, 2023, 17 (02) :267-308
[27]   Integral points on hyperelliptic curves [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir ;
Stoll, Michael ;
Tengely, Szabolcs .
ALGEBRA & NUMBER THEORY, 2008, 2 (08) :859-885
[28]   Integral division points on curves [J].
Grant, David ;
Ih, Su-Ion .
COMPOSITIO MATHEMATICA, 2013, 149 (12) :2011-2035
[29]   ON θ-CONGRUENT NUMBERS ON REAL QUADRATIC NUMBER FIELDS [J].
Janfada, Ali S. ;
Salami, Sajad .
KODAI MATHEMATICAL JOURNAL, 2015, 38 (02) :352-364
[30]   On the number of rational points on some families of Fermat curves over finite fields [J].
Moisio, Marko .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) :546-562