The average number of integral points on the congruent number curves

被引:0
作者
Chan, Stephanie [1 ,2 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
关键词
Elliptic curve; Quadratic twist; Integral point; SELMER GROUPS; THEOREM; SIZE;
D O I
10.1016/j.aim.2024.109946
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the total number of non-torsion integral points on the elliptic curves epsilon(D): y(2) = x(3) -D(2)x, where D ranges over positive squarefree integers less than N , is O ( N (log N ) (- 1/4 +E )). The proof involves a discriminant-lowering procedure on integral binary quartic forms and an application of HeathBrown's method on estimating the average size of the 2-Selmer groups of the curves in this family.<br /> (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:31
相关论文
共 50 条
  • [21] ON HIGH RANK π/3 AND 2π/3-CONGRUENT NUMBER ELLIPTIC CURVES
    Janfada, A. S.
    Salami, S.
    Dujella, A.
    Peral, J. C.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (06) : 1867 - 1880
  • [22] ON THE AVERAGE NUMBER OF 2-SELMER ELEMENTS OF ELLIPTIC CURVES OVER Fq(X) WITH Two MARKED POINTS
    Thorne, Jack A.
    DOCUMENTA MATHEMATICA, 2019, 24 : 1179 - 1223
  • [23] A VARIANT OF THE CONGRUENT NUMBER PROBLEM
    Dimabayao, Jerome T.
    Purkait, Soma
    KYUSHU JOURNAL OF MATHEMATICS, 2024, 78 (02) : 413 - 432
  • [24] THE NUMBER OF POINTS ON ELLIPTIC CURVES y2 = x(3)
    Jeon, Wonju
    Kim, Daeyeoul
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 28 (03): : 433 - 447
  • [25] Torsion points on elliptic curves over number fields of small degree
    Derickx, Maarten
    Kamienny, Sheldon
    Stein, William
    Stoll, Michael
    ALGEBRA & NUMBER THEORY, 2023, 17 (02) : 267 - 308
  • [26] Integral points on hyperelliptic curves
    Bugeaud, Yann
    Mignotte, Maurice
    Siksek, Samir
    Stoll, Michael
    Tengely, Szabolcs
    ALGEBRA & NUMBER THEORY, 2008, 2 (08) : 859 - 885
  • [27] Integral division points on curves
    Grant, David
    Ih, Su-Ion
    COMPOSITIO MATHEMATICA, 2013, 149 (12) : 2011 - 2035
  • [28] ON θ-CONGRUENT NUMBERS ON REAL QUADRATIC NUMBER FIELDS
    Janfada, Ali S.
    Salami, Sajad
    KODAI MATHEMATICAL JOURNAL, 2015, 38 (02) : 352 - 364
  • [29] On the number of rational points on some families of Fermat curves over finite fields
    Moisio, Marko
    FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) : 546 - 562
  • [30] ON θ-CONGRUENT NUMBERS OVER REAL NUMBER FIELDS
    Das, Shamik
    Saikia, Anupam
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (02) : 218 - 229