Roundly exploring the synthesis, structural design, performance modification, and practical applications of silicon-carbon composite anodes for lithium-ion batteries

被引:0
作者
Wang, Yunlei [1 ,2 ,3 ]
Yang, Fangzhou [1 ]
Wu, Taibin [1 ]
Huang, Guangjie [3 ]
机构
[1] Chongqing Univ Arts & Sci, Sch Mat Sci & Engn, Chongqing 402160, Peoples R China
[2] KTH Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden
[3] Chongqing Univ, Sch Mat Sci & Engn, Chongqing 400044, Peoples R China
关键词
Lithium-ion batteries; Silicon carbon anodes; Structural design; Performance modification; CHEMICAL-VAPOR-DEPOSITION; AT-CARBON; SCALABLE SYNTHESIS; SHELL STRUCTURE; ELECTROCHEMICAL PROPERTIES; SI NANOPARTICLES; GRAPHENE; STABILITY; MICROSPHERES; NANOSPHERES;
D O I
10.1016/j.est.2024.113794
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Silicon-based anode materials will replace traditional graphite anode materials and become one of the most promising anode materials for the next generation of lithium-ion batteries due to their high theoretical lithium storage capacity. However, silicon-based anodes have disadvantages such as large volume expansion effect, low first coulombic efficiency, low conductivity, and unstable solid electrolyte interface film, which lead to poor cycle stability of silicon-based anodes and seriously hinder their practical application. In order to better address these defects of silicon anodes, the more effective way at present is to use carbon with good stability and high conductivity to modify silicon-based anodes, and prepare silicon-carbon composite anodes. This way, silicon-carbon anodes, as a material with high theoretical capacity, are expected to have large-scale commercial prospects. This review comprehensively explores the synthesis method, structural design, performance modification, and applications prospect of silicon-carbon composite anodes. Its main purpose is to propose feasible strategies for the development of new preparation technology, nanostructural design, modification of electrode performance, and future commercial applications of silicon-carbon anodes. Additionally, this article also reveals the limitations of existing silicon-carbon composite anode materials, and the possible solving approach are also proposed to improve the comprehensive electrochemical performance of lithium-ion batteries.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] A Design Strategy of Carbon Coatings on Silicon Nanoparticles as Anodes of High-Performance Lithium-Ion Batteries
    Tan, Wen
    Yang, Fan
    Lu, Zhouguang
    Xu, Zhenghe
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (10) : 12143 - 12150
  • [22] Practical silicon-based composite anodes for lithium-ion batteries: Fundamental and technological features
    Dimov, Nikolay
    Xia, Yonggao
    Yoshio, Masaki
    JOURNAL OF POWER SOURCES, 2007, 171 (02) : 886 - 893
  • [23] Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries
    Chen, Po-Chiang
    Xu, Jing
    Chen, Haitian
    Zhou, Chongwu
    NANO RESEARCH, 2011, 4 (03) : 290 - 296
  • [24] Hierarchical Carbon Shell Compositing Microscale Silicon Skeleton as High-Performance Anodes for Lithium-Ion Batteries
    An, Weili
    He, Peng
    Xiao, Chengmao
    Guo, Eming
    Pang, Chunlei
    He, Xueqin
    Ren, Jianguo
    Yuan, Guohui
    Du, Ning
    Yang, Deren
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (05) : 4976 - 4985
  • [25] The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries
    Wu, Jingxing
    Cao, Yinliang
    Zhao, Haimin
    Mao, Jianfeng
    Guo, Zaiping
    CARBON ENERGY, 2019, 1 (01) : 57 - 76
  • [26] Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries
    Po-Chiang Chen
    Jing Xu
    Haitian Chen
    Chongwu Zhou
    Nano Research, 2011, 4 : 290 - 296
  • [27] Scalable Synthesis of Si Nanosheets as Stable Anodes for Practical Lithium-Ion Batteries
    Wei, Yanwei
    Wang, Tong
    Wang, Jinxiu
    Wang, Shun
    Zhang, Dian
    Ma, Yuzhu
    Gao, Yihan
    Duan, Linlin
    Yang, Dong
    Zhang, Wei
    SMALL METHODS, 2024, 8 (12)
  • [28] Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries
    Sourice, Julien
    Bordes, Arnaud
    Boulineau, Adrien
    Alper, John P.
    Franger, Sylvain
    Quinsac, Axelle
    Habert, Aurelie
    Leconte, Yann
    De Vito, Eric
    Porcher, Willy
    Reynaud, Cecile
    Herlin-Boime, Nathalie
    Haon, Cedric
    JOURNAL OF POWER SOURCES, 2016, 328 : 527 - 535
  • [29] Research Progress on the Structural Design and Optimization of Silicon Anodes for Lithium-Ion Batteries: A Mini-Review
    Yu, Zhi
    Cui, Lijiang
    Zhong, Bo
    Qu, Guoxing
    COATINGS, 2023, 13 (09)
  • [30] Solutions for the problems of silicon-carbon anode materials for lithium-ion batteries
    Liu, Xuyan
    Zhu, Xinjie
    Pan, Deng
    ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (06):