Mathematical analysis of the Wiener processes with time-delayed feedback

被引:0
作者
Kobayashi, Miki U. [1 ]
Takehara, Kohta [2 ]
Ando, Hiroyasu [3 ]
Yamada, Michio [4 ]
机构
[1] Rissho Univ, Fac Econ, 4-2-16 Osaki,Shinagawa Ku, Tokyo 1418602, Japan
[2] Tokyo Metropolitan Univ, Grad Sch Social Sci, 1-4-1 Marunouchi,Chiyoda Ku, Tokyo 1000005, Japan
[3] Univ Tsukuba, Fac Engn Informat & Syst, 1-1-1 Tennoudai, Tsukuba 3058573, Japan
[4] Kyoto Univ, Res Inst Math Sci, Kyoto, Japan
基金
日本学术振兴会;
关键词
CHAOS;
D O I
10.1063/5.0209241
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
It is known that time delays generally make a system unstable. However, it is numerically observed that the diffusion coefficients of the Wiener processes with time-delayed feedback decrease while increasing the time delay tau. In particular, the decay of the diffusion coefficients with the form (1 / 1+tau)(2) has been confirmed by numerical simulations [Ando et al., Phys. Rev. E 96, 012148 (2017)]. In this paper, we present two analytical derivations for the relation (1 / 1+tau)(2) by dynamical system approaches using the Laplace transform and stochastic differential equations. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:4
相关论文
共 11 条
[1]   Time-delayed feedback control of diffusion in random walkers [J].
Ando, Hiroyasu ;
Takehara, Kohta ;
Kobayashi, Miki U. .
PHYSICAL REVIEW E, 2017, 96 (01)
[2]   The control of chaos: theory and applications [J].
Boccaletti, S ;
Grebogi, C ;
Lai, YC ;
Mancini, H ;
Maza, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (03) :103-197
[3]  
Hale J., 1993, Introduction to Functional Differential Equations, V99
[4]  
K��chler U., 1992, Stoch. Stoch. Rep, V40, P23, DOI [10.1080/17442509208833780, DOI 10.1080/17442509208833780]
[5]   Control of deterministic diffusion generated by chaotic dynamical systems through time delayed feedback control [J].
Kobayashi, Miki U. .
IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2018, 9 (02) :196-203
[6]   Reliable Logic Circuit Elements that Exploit Nonlinearity in the Presence of a Noise Floor [J].
Murali, K. ;
Sinha, Sudeshna ;
Ditto, William L. ;
Bulsara, Adi R. .
PHYSICAL REVIEW LETTERS, 2009, 102 (10)
[7]   DELAYED RANDOM-WALKS [J].
OHIRA, T ;
MILTON, JG .
PHYSICAL REVIEW E, 1995, 52 (03) :3277-3280
[8]   Delayed stochastic systems [J].
Ohira, T ;
Yamane, T .
PHYSICAL REVIEW E, 2000, 61 (02) :1247-1257
[9]   CONTINUOUS CONTROL OF CHAOS BY SELF-CONTROLLING FEEDBACK [J].
PYRAGAS, K .
PHYSICS LETTERS A, 1992, 170 (06) :421-428
[10]   State-dependent act-and-wait time-delayed feedback control algorithm [J].
Pyragas, Viktoras ;
Pyragas, Kestutis .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 73 :338-350