Wire Arc Additive Manufacturing (WAAM) represents a disruptive technology in the field of metal additive manufacturing. Understanding the relationship between input factors and layer geometry is crucial for studying the process comprehensively and developing various industrial applications such as slicing software and feedforward controllers. Statistical tools such as clustering and multivariate polynomial regression provide methods for exploring the influence of input factors on the final product. These tools facilitate application development by helping to establish interpretable models that engineers can use to grasp the underlying physical phenomena without resorting to complex physical models. In this study, an experimental campaign was conducted to print steel components using WAAM technology. Advanced statistical methods were employed for mathematical modeling of the process. The results obtained using linear regression, polynomial regression, and a neural network optimized using the Tree-structured Parzen Estimator (TPE) were compared. To enhance performance while maintaining the interpretability of regression models, clusterwise regression was introduced as an alternative modeling technique along with multivariate polynomial regression. The results showed that the proposed approach achieved results comparable to neural network modeling, with a Mean Absolute Error (MAE) of 0.25 mm for layer height and 0.68 mm for layer width compared to 0.23 mm and 0.69 mm with the neural network. Notably, this approach preserves the interpretability of the models; a further discussion on this topic is presented as well.
机构:
Univ Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, EnglandUniv Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England
Mycroft, William
Katzman, Mordechai
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, EnglandUniv Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England
Katzman, Mordechai
Tammas-Williams, Samuel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sheffield, Dept Mat Sci & Engn, Sheffield, S Yorkshire, England
Liverpool John Moores Univ, Dept Maritime & Mech Engn, Liverpool, Merseyside, EnglandUniv Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England
Tammas-Williams, Samuel
Hernandez-Nava, Everth
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sheffield, Dept Mat Sci & Engn, Sheffield, S Yorkshire, EnglandUniv Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England
Hernandez-Nava, Everth
Panoutsos, George
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, EnglandUniv Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England
Panoutsos, George
Todd, Iain
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sheffield, Dept Mat Sci & Engn, Sheffield, S Yorkshire, EnglandUniv Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England
Todd, Iain
Kadirkamanathan, Visakan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield, S Yorkshire, EnglandUniv Sheffield, Sch Math & Stat, Sheffield, S Yorkshire, England